首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   29篇
  2024年   6篇
  2023年   12篇
  2022年   2篇
  2021年   6篇
  2020年   9篇
  2019年   15篇
  2018年   6篇
  2017年   12篇
  2016年   6篇
  2015年   11篇
  2014年   1篇
  2013年   15篇
  2012年   4篇
  2011年   9篇
  2010年   6篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   13篇
  2005年   10篇
  2004年   6篇
  2003年   2篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1990年   7篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1985年   3篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
排序方式: 共有246条查询结果,搜索用时 140 毫秒
81.
Kelp forests along temperate and polar coastlines represent some of most diverse and productive habitats on the Earth. Here, we synthesize information from >60 years of research on the structure and functioning of kelp forest habitats in European waters, with particular emphasis on the coasts of UK and Ireland, which represents an important biogeographic transition zone that is subjected to multiple threats and stressors. We collated existing data on kelp distribution and abundance and reanalyzed these data to describe the structure of kelp forests along a spatial gradient spanning more than 10° of latitude. We then examined ecological goods and services provided by kelp forests, including elevated secondary production, nutrient cycling, energy capture and flow, coastal defense, direct applications, and biodiversity repositories, before discussing current and future threats posed to kelp forests and identifying key knowledge gaps. Recent evidence unequivocally demonstrates that the structure of kelp forests in the NE Atlantic is changing in response to climate‐ and non‐climate‐related stressors, which will have major implications for the structure and functioning of coastal ecosystems. However, kelp‐dominated habitats along much of the NE Atlantic coastline have been chronically understudied over recent decades in comparison with other regions such as Australasia and North America. The paucity of field‐based research currently impedes our ability to conserve and manage these important ecosystems. Targeted observational and experimental research conducted over large spatial and temporal scales is urgently needed to address these knowledge gaps.  相似文献   
82.
The efficient collection of fishes from structurally complex environments (e.g., coral reefs, kelp forests) is difficult because conventional collecting methods generally cannot be used and many of the fishes are mobile and active. We describe the design, operation, and application of a diver-propelled net for efficiently collecting many species of benthic fish that reside on coral reefs and on kelp-forested rocky reefs. The overall size of the net and mesh size of the netting can be adjusted according to the size and behavior of targeted species to minimize drag and damage to specimens. Altering these dimensions combined with proper use of the net can result in a high rate of capture success. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
83.
A pronounced, widespread and persistent regime shift among marine ecosystems is observable on temperate rocky reefs as a result of sea urchin overgrazing. Here, we empirically define regime-shift dynamics for this grazing system which transitions between productive macroalgal beds and impoverished urchin barrens. Catastrophic in nature, urchin overgrazing in a well-studied Australian system demonstrates a discontinuous regime shift, which is of particular management concern as recovery of desirable macroalgal beds requires reducing grazers to well below the initial threshold of overgrazing. Generality of this regime-shift dynamic is explored across 13 rocky reef systems (spanning 11 different regions from both hemispheres) by compiling available survey data (totalling 10 901 quadrats surveyed in situ) plus experimental regime-shift responses (observed during a total of 57 in situ manipulations). The emergent and globally coherent pattern shows urchin grazing to cause a discontinuous ‘catastrophic’ regime shift, with hysteresis effect of approximately one order of magnitude in urchin biomass between critical thresholds of overgrazing and recovery. Different life-history traits appear to create asymmetry in the pace of overgrazing versus recovery. Once shifted, strong feedback mechanisms provide resilience for each alternative state thus defining the catastrophic nature of this regime shift. Importantly, human-derived stressors can act to erode resilience of desirable macroalgal beds while strengthening resilience of urchin barrens, thus exacerbating the risk, spatial extent and irreversibility of an unwanted regime shift for marine ecosystems.  相似文献   
84.
Ecklonia radiata is the main foundation species in Australian temperate reefs, yet little has been published on its reproduction and how this may change across its depth range (1–50+ m). In this study, we examined differences in sporophyte morphology and zoospore production during a reproductive season and across four depths (7, 15, 25, and 40 m). Additionally, we examined differences in germination rate, survival, and morphological traits of gametophytes obtained from these four depths, cultured under the same light and temperature conditions. Multivariate morphology of sporophytes differed significantly between deep (~40 m) and shallow sites (7 and 15 m), but individual morphological traits were not significantly different across depths. Total spore production was similar across depths but the peak of zoospore release was observed in February at 15 m of depth (6,154 zoospores · mm?2 of tissue) and the minimum observed in January at 7, 25, and 40 m (1,141, 987, and 214 zoospores · mm?2 of tissue, respectively). The source depth of zoospores did not have an influence in the germination rate or the survival of gametophytes, and only gametophytes sourced from 40 m sites presented significantly less surface area and number of branches. Overall, these results indicate that E. radiata’s reproductive performance does not change across its depth range and that kelp beds reproducing in deeper areas may contribute to the replenishment of their shallow counterparts. We propose that deep kelps may constitute a mechanism of resilience against climate change and anthropogenic disturbances.  相似文献   
85.
86.
Monitoring Sites 1000” – Japan's long‐term monitoring survey was established in 2003, based on the Japanese Government policy for the conservation of biodiversity. Ecological surveys have been conducted on various types of ecosystems at approximately 1000 sites in Japan for 15 years now and are planned to be carried out for 100 years. Since 2008, seaweed communities had been monitored at six sites, featuring the kelp (e.g. Saccharina and Ecklonia; Laminariales) and Sargassum (Fucales) communities in the subarctic and temperate regions of Japan. Annual surveys were carried out during the season when these canopy‐forming seaweeds are most abundant. A non‐destructive quadrat sampling method, with permanent quadrats placed along transects perpendicular to the shoreline, was used to determine species composition, coverage, and vertical distribution of seaweeds at these sites; while destructive sampling was done every 5 years to determine biomass. The occurrence of canopy‐forming species Saccharina japonica (var. japonica) and Ecklonia cava have appeared to be stable at the Muroran (southwestern part of Hokkaido Island) and Shimoda (Pacific coast of middle Honshu Island) sites, respectively; whereas the coverage of Ecklonia radicosa (= Eckloniopsis radicosa) at the Satsuma‐Nagashima site in southern part of Kyushu Island was highly variable until its sudden disappearance from the habitat in 2016. Thalli of E. radicosa lost most of their blades through browsing by herbivorous fish, and thus, this may be one of the causes of the decline. A shift in the community structure related to environmental changes had also been observed at some other sites. Pre‐ and post‐disaster data revealed the impact of the 2011 earthquake and tsunami disasters, including a shift in the vertical distribution of Ecklonia bicyclis (= Eisenia bicyclis) to shallower depths at the Shizugawa site in the Pacific coast of northern Honshu Island, due to seafloor subsidence.  相似文献   
87.
Summary

Studies of juvenile recruitment of the green sea urchin Strongylocentrotus droebachiensis in the Gulf of Maine were conducted during the summer of 1995. These experiments confirmed 12 years of previous observations that settlement only occurs during the months of June and July. Settlement panels were placed at a series of sites along the Maine and New Hampshire coastline to compare recruitment in the northeastern and southwestern regions of the Gulf of Maine. The densities of urchins recruiting in Casco Bay and at the Isles of Shoals were two orders of magnitude higher than those from Eastport and Winter Harbor. There was a discontinuity in settlement densities at Penobscot Bay. Experiments conducted at the Isles of Shoals showed a positive relationship between water motion and larval supply, but neither parameter correlated with recruitment density over eight stations. Contrary to previous results, recuitment was greater within natural, as well as, artificial kelp beds compared to urchin barren areas and control panels outside the experimental kelp beds. The impact of changing community structure due to urchin harvesting was discussed as an factor influencing differences in juvenile urchin recruitment.  相似文献   
88.
Patterns of spatial genetic structure (SGS), typically estimated by genotyping adults, integrate migration over multiple generations and measure the effective gene flow of populations. SGS results can be compared with direct ecological studies of dispersal or mating system to gain additional insights. When mismatches occur, simulations can be used to illuminate the causes of these mismatches. Here, we report a SGS and simulation‐based study of self‐fertilization in Macrocystis pyrifera, the giant kelp. We found that SGS is weaker than expected in M. pyrifera and used computer simulations to identify selfing and early mortality rates for which the individual heterozygosity distribution fits that of the observed data. Only one (of three) population showed both elevated kinship in the smallest distance class and a significant negative slope between kinship and geographical distance. All simulations had poor fit to the observed data unless mortality due to inbreeding depression was imposed. This mortality could only be imposed for selfing, as these were the only simulations to show an excess of homozygous individuals relative to the observed data. Thus, the expected data consistently achieved nonsignificant differences from the observed data only under models of selfing with mortality, with best fits between 32% and 42% selfing. Inbreeding depression ranged from 0.70 to 0.73. The results suggest that density‐dependent mortality of early life stages is a significant force in structuring Macrocystis populations, with few highly homozygous individuals surviving. The success of these results should help to validate simulation approaches even in data‐poor systems, as a means to estimate otherwise difficult‐to‐measure life cycle parameters.  相似文献   
89.
Recent changes in kelp distribution along the north coast of Spain are described and analysed through a long-term population study focused on Saccorhiza polyschides. The main purpose of this work was to understand which population processes are more sensitive to increased sea surface temperatures and reductions in the intensity of upwelling episodes in the current scenario of global warming. Data on the distribution of kelp species (old and recent data) were obtained from the literature and compared with current species distributions assessed by field sampling between 2007 and 2010 and covering a transition coastline of 200 km. The long-term population study of Saccorhiza polyschides was conducted at a site close to the edge of its current distribution. Data for recruitment, growth and survival, as well as density and supported biomass of populations collected since the 1990s were analysed using data from the late 1970s for comparison. Kelps on the north coast of Spain have shown a westward retreat since the 1980s. Dense populations of Saccorhiza polyschides, the most important species, and Laminaria ochroleuca have been reduced to small patches and isolated individuals east of Peñas Cape (43° 39.4′ N; 5° 50.8′ W). The long-term study of Saccorhiza polyschides populations showed a collapse in the growth of the sporophyte and very low recruitment from the beginning of this century. The possible causal factors of this population decline and its consequences are considered, suggesting that long warm summer periods (more than 30 consecutive days of seawater temperature?>?20°C) could alter kelp performance.  相似文献   
90.
In species that form dense populations, major disturbance events are expected to increase the chance of establishment for immigrant lineages. Real‐time tests of the impact of disturbance on patterns of genetic structure are, however, scarce. Central to testing these concepts is determining the pool of potential immigrants dispersing into a disturbed area. In 2016, a 7.8 magnitude earthquake occurred on the South Island of New Zealand. Affecting approximately 100 km of coastline, this quake caused extensive uplift (several metres high), extirpating many intertidal populations, including keystone intertidal kelp species. Following the uplift, we set out to determine the geographic origins of detached kelp specimens which rafted into the disturbed zone. Specifically, we used genotyping‐by‐sequencing (GBS) approaches to compare beach‐cast southern bull‐kelp (Durvillaea antarctica and Durvillaea poha) samples to established populations throughout the species' ranges, and thus infer the geographic origins of potential colonists reaching the disturbed coast. Our findings revealed an ongoing supply of diverse lineages dispersing to the newly uplifted coastline, suggesting potential for establishment of “exotic” lineages following disturbance. Furthermore, we found that some drifting individuals of each species came from far‐distant regions, some >1,200 km away. These results show that diverse lineages – in many cases from very distant sources – can compete for new space in the wake of an exceptional disturbance event, illustrating the potential of long‐distance dispersal as a key mechanism for reassembly of coastal ecosystems. Furthermore, our findings demonstrate that high‐resolution genomic baselines can be used to robustly assign the provenance of dispersing individuals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号