首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88169篇
  免费   4616篇
  国内免费   5514篇
  2024年   256篇
  2023年   1093篇
  2022年   2380篇
  2021年   2701篇
  2020年   1756篇
  2019年   2196篇
  2018年   1978篇
  2017年   1672篇
  2016年   2293篇
  2015年   4098篇
  2014年   7416篇
  2013年   6985篇
  2012年   5477篇
  2011年   6252篇
  2010年   4428篇
  2009年   4260篇
  2008年   4439篇
  2007年   4748篇
  2006年   3350篇
  2005年   2922篇
  2004年   2088篇
  2003年   1798篇
  2002年   1731篇
  2001年   1301篇
  2000年   1171篇
  1999年   1143篇
  1998年   1069篇
  1997年   870篇
  1996年   916篇
  1995年   983篇
  1994年   886篇
  1993年   862篇
  1992年   843篇
  1991年   798篇
  1990年   726篇
  1989年   685篇
  1988年   680篇
  1987年   584篇
  1986年   507篇
  1985年   764篇
  1984年   1125篇
  1983年   743篇
  1982年   944篇
  1981年   886篇
  1980年   684篇
  1979年   624篇
  1978年   383篇
  1977年   371篇
  1976年   361篇
  1973年   244篇
排序方式: 共有10000条查询结果,搜索用时 187 毫秒
61.
One model for the timing of cytokinesis is based on findings that p34(cdc2) can phosphorylate myosin regulatory light chain (LC20) on inhibitory sites (serines 1 and 2) in vitro (Satterwhite, L.L., M.H. Lohka, K.L. Wilson, T.Y. Scherson, L.J. Cisek, J.L. Corden, and T.D. Pollard. 1992. J. Cell Biol. 118:595-605), and this inhibition is proposed to delay cytokinesis until p34(cdc2) activity falls at anaphase. We have characterized previously several kinase activities associated with the isolated cortical cytoskeleton of dividing sea urchin embryos (Walker, G.R., C.B. Shuster, and D.R. Burgess. 1997. J. Cell Sci. 110:1373-1386). Among these kinases and substrates is p34(cdc2) and LC20. In comparison with whole cell activity, cortical H1 kinase activity is delayed, with maximum levels in cortices prepared from late anaphase/telophase embryos. To determine whether cortical-associated p34(cdc2) influences cortical myosin II activity during cytokinesis, we labeled eggs in vivo with [(32)P]orthophosphate, prepared cortices, and mapped LC20 phosphorylation through the first cell division. We found no evidence of serine 1,2 phosphorylation at any time during mitosis on LC20 from cortically associated myosin. Instead, we observed a sharp rise in serine 19 phosphorylation during anaphase and telophase, consistent with an activating phosphorylation by myosin light chain kinase. However, serine 1,2 phosphorylation was detected on light chains from detergent-soluble myosin II. Furthermore, cells arrested in mitosis by microinjection of nondegradable cyclin B could be induced to form cleavage furrows if the spindle poles were physically placed in close proximity to the cortex. These results suggest that factors independent of myosin II inactivation, such as the delivery of the cleavage stimulus to the cortex, determine the timing of cytokinesis.  相似文献   
62.
63.
64.
The factors determining the onset and extent of reconstructive denaturation of proteins were considered by comparing circular dichroism (CD) data of seven proteins and previously published findings. The effects of sodium dodecyl sulfate (SDS) on the conformation of the following proteins were tested: lysozyme, the mitogens fromPhytolacca americana (fractions Pa2 and Pa4), lectin fromWistaria floribunda, ovine lutropin, a Bence Jones protein, and histone H2B. While the helix content of lysozyme was raised by SDS slightly, in the Bence Jones protein andW. floribunda lectin it increased from near zero to about 25–30%. In histone H2B the helix content was raised by SDS even to about 48%. However, no clear indication of helix formation could be observed in the mitogens and lutropin, even at low pH or 2.0–2.5. The tertiary structure of the proteins was perturbed by SDS. It was concluded that the reorganization of secondary structure of the proteins was favored by the following factors: (1) presence of helicogenic amino acid sequences in the protein, (2) availability of positively charged sites of the basic amino acids for interactions with the dodecyl ion, (3) absence of a large surplus of negatively charged sites on the surface of protein, and (4) absence of extensive disulfide cross-linking within the macromolecule. Both hydrophobic and electrostatic interactions occur in reconstructive denaturation, and the newly formed helices are stabilized by hydrophobic shielding by the alkyl chains of the alkyl sulfate.  相似文献   
65.
Human Tamm-Horsfall urinary glycoprotein from an individual of the blood group Sd(a+) phenotype was tritium-labelled by treatment with galactose oxidase and sodium boro[3H]hydride and was then digested with endo-beta-galactosidase. A series of dialysable, labelled fragments was released from which a pentasaccharide was isolated that strongly inhibited the agglutination of Sd(a+) red cells by human anti-Sda serum and hence contained the Sda determinant structure. Reduction, methylation analysis and sequential exo-glycosidase digestion established the structure of the pentasaccharide as: GalNAc beta(1 leads to 4)[NeuAc(2 leads to 3)]Gal beta(1 leads to 4)GlcNAc beta(1 leads to 3)Gal  相似文献   
66.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
67.
The ability of a number of nitrogen-containing compounds that simultaneously carry the adamantane and monoterpene moieties to inhibit Tdp1, an important enzyme of the DNA repair system, is studied. Inhibition of this enzyme has the potential to overcome chemotherapeutic resistance of some tumor types. Compound (+)-3c synthesized from 1-aminoadamantane and (+)-myrtenal, and compound 4a produced from 2-aminoadamantane and citronellal were found to be most potent as they inhibited Tdp1 with IC50 values of 6 and 3.5 µM, respectively. These compounds proved to have low cytotoxicity in colon HCT-116 and lung A-549 human tumor cell lines (CC50 > 50 µM). It was demonstrated that compound 4a at 10 µM enhanced cytotoxicity of topotecan, a topoisomerase 1 poison in clinical use, against HCT-116 more than fivefold and to a lesser extent of 1.5 increase in potency for A-549.  相似文献   
68.
Fungus-farming ant colonies vary four to five orders of magnitude in size. They employ compounds from actinomycete bacteria and exocrine glands as antimicrobial agents. Atta colonies have millions of ants and are particularly relevant for understanding hygienic strategies as they have abandoned their ancestors'' prime dependence on antibiotic-based biological control in favour of using metapleural gland (MG) chemical secretions. Atta MGs are unique in synthesizing large quantities of phenylacetic acid (PAA), a known but little investigated antimicrobial agent. We show that particularly the smallest workers greatly reduce germination rates of Escovopsis and Metarhizium spores after actively applying PAA to experimental infection targets in garden fragments and transferring the spores to the ants'' infrabuccal cavities. In vitro assays further indicated that Escovopsis strains isolated from evolutionarily derived leaf-cutting ants are less sensitive to PAA than strains from phylogenetically more basal fungus-farming ants, consistent with the dynamics of an evolutionary arms race between virulence and control for Escovopsis, but not Metarhizium. Atta ants form larger colonies with more extreme caste differentiation relative to other attines, in societies characterized by an almost complete absence of reproductive conflicts. We hypothesize that these changes are associated with unique evolutionary innovations in chemical pest management that appear robust against selection pressure for resistance by specialized mycopathogens.  相似文献   
69.
Plant growth rate has frequently been associated with herbivore defence: a large investment in quantitative defence compounds occurs at the expense of growth. We tested whether such a relationship also holds for growth rate and pathogen resistance. For 15 radish (Raphanus sativus L.) cultivars, we determined the potential growth rate and the resistance to fungal wilt disease caused by Fusarium oxysporum. We subsequently aimed to explain a putative negative relationship between growth rate and resistance based on plant chemical composition. Both growth rate and resistance level varied greatly among cultivars. Moreover, there was a strong negative correlation between growth rate and resistance, i.e. there are costs associated with a high resistance level. Roots of slow-growing, resistant cultivars have a higher biomass density. Using pyrolysis mass spectrometry. we part1y explained variation in both growth rate and resistance in terms of the same change in chemical composition. Leaves of slow-growing, resistant cultivars contained more cell wall material. Surprisingly, roots of slow-growing, highly resistant cultivars contained significantly less cell wall material, and more cytoplasmic elements (proteins). We speculate that this higher protein concentration is related to high construction and turn-over costs and high metabolic activity. The latter in turn is thought to be responsible for a rapid and adequate resistance reaction, in which phenols may be involved.  相似文献   
70.
The nucleotide sequences of the cloned human salivary and pancreatic α-amylase cDNAs correspond to the continuous mRNA sequences of 1768 and 1566 nucleotides, respectively. These include all of the amino acid coding regions. Salivary cDNA contains 200 bp in the 5′-noncoding region and 32 in the 3′-noncoding region. Pancreatic cDNA contains 3 and 27 bp of 5′- and 3′-noncoding regions, respectively. The nucleotide sequence humology of the two cDNAs is 96% in the coding region, and the predicted amino acid sequences are 94% homologous.Comparison of the sequences of human α-amylase cDNAs with those previously obtained for mouse α-amylase genes (Hagenbuchle et al., 1980; Schibler et al., 1982) showed the possibility of gene conversion between the two genes of human α-amylase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号