首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   7篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   8篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有81条查询结果,搜索用时 111 毫秒
41.
Across the globe, many species of reptile are threatened with extinction, with changes in grazing pressure as a significant factor in their decline. Few studies have investigated the role of native herbivores, yet studying natural grazers may provide insight into natural grazing regimes, not apparent in studies of domestic livestock. In this study, we investigate the habitat requirements of a threatened Australian grassland reptile, the striped legless lizard, Delma impar, in grasslands grazed by a native herbivore, the eastern grey kangaroo Macropus giganteus. Delma impar appears sensitive to habitat change resulting from altered grazing intensity, but a lack of information hinders implementation of appropriate grazing regimes. To address this gap, we investigated habitat preferences of D. impar at multiple spatial scales across a grazing gradient. We found that the occurrence of D. impar was not affected by the size of grassland remnants, but was negatively related to the density of native grazers. This result was likely a consequence of the negative effect of high grazing intensity on grass structural complexity, as the probability of encountering a D. impar was positively related to grass structural complexity at the fine scale (1 m2). We recommend that conservation efforts should avoid high intensity grazing (equivalent to > 1.3 kangaroos/ha), yet ensure enough grazing disturbance is maintained to promote the formation of complex grass structures. We also recommend that small floristically degraded and fragmented grassland habitat should be included in conservation efforts. These recommendations will likely benefit a number of faunal species in grasslands grazed by domestic and native grazers. Importantly, our data highlight the need for managing grazing regimes, even in environments dominated by native herbivores.  相似文献   
42.
Management and conservation require a comprehensive understanding of species distributions and habitat requirements. Reliable species occurrence data are critical in the face of climate change and other anthropogenic activity, but are often difficult to obtain, particularly for wide ranging species. This directly affects ecological models of occurrence and habitat suitability and, in turn, conservation and management decisions. We used generalized linear mixed‐effects models to identify ecological determinants of occurrence for four macropod species (across a region of tropical northern Australia) using a non‐invasive genetic scat approach with and without additional observation records from visual surveys. We show that genetically derived occurrence data, alone, can be used to develop informative ecological models that describe the inter‐specific habitat requirements of macropods. Furthermore, we show that genetic scat surveys of macropods are cheaper and less time consuming to conduct, and tend to provide more occurrence records (and less false absences) than visual surveys. We conclude that indirect surveys using molecular approaches have an important role to play in modelling species' occurrence, and developing future management practices and guidelines to aid species conservation.  相似文献   
43.
Investigations into the mechanisms underpinning plant selection by herbivores have often yielded conflicting results. Such inconsistency might stem from whether selection experiments are conducted with captive or wild populations, and upon the different measures of plant selection used to determine herbivore preference. Here we compared the feeding preferences of captive and wild kangaroos (Macropus fuliginosus) using a standard set of plant species (14 Hakea spp., Proteaceae) and several measures of herbivore selection to examine how environment influenced relative consumption. Three indices of herbivore consumption were measured: number of plants (NP), total shoot volume per plant (TV) and percentage available shoot volume (PV) consumed. NP and TV were closely correlated in the wild and captive populations and consistently correlated with six morphological and chemical plant attributes examined, the most notable being a strong negative correlation with shoot phenolic content. This uniformity suggests that plant selection by captive kangaroos is broadly consistent with that observed in field trials, and consequently that for macropods, at least, captive trials offer a valid way to determine the relative acceptability of different plant species. However, the fact that our third measure of herbivore selection PV was weakly correlated in captive and wild populations and showed no relationship with shoot phenolic content highlights the importance of which measure of plant selection is applied. We suggest that, while NP and TV are potentially confounded by plant size and availability, they offer the clearest insight into plant selection from the point of view of the herbivore, while PV is more suitable for plant‐centred studies.  相似文献   
44.
AIM: The rodent genus Microdipodops (kangaroo mice) includes two sand-obligate endemics of the Great Basin Desert: M. megacephalus and M. pallidus. The dark kangaroo mouse, M. megacephalus, is distributed throughout the Great Basin and our principal aims were to formulate phylogenetic hypotheses for this taxon and make phylogeographical comparisons with its congener. LOCATION: The Great Basin Desert of western North America. METHODS: DNA sequence data from three mitochondrial genes were examined from 186 individuals of M. megacephalus, representing 47 general localities. Phylogenetic inference was used to analyse the sequence data. Directional analysis of phylogeographical patterns was used to examine haplotype sharing patterns and recover routes of gene exchange. Haplotype-area curves were constructed to evaluate the relationship between genetic variation and distributional island size for M. megacephalus and M. pallidus. RESULTS: Microdipodops megacephalus is a rare desert rodent (trapping success was 2.67%). Temporal comparison of trapping data shows that kangaroo mice are becoming less abundant in the study area. The distribution has changed slightly since the 1930s but many northern populations now appear to be small, fragmented, or locally extinct. Four principal phylogroups (the Idaho isolate and the western, central and eastern clades) are evident; mean sequence divergence between phylogroups for cytochrome b is c. 8%. Data from haplotype sharing show two trends: a north-south trend and a web-shaped trend. Analyses of haplotype-area curves reveal significant positive relationships. MAIN CONCLUSIONS: The four phylogroups of M. megacephalus appear to represent morphologically cryptic species; in comparison, a companion study revealed two cryptic lineages in M. pallidus. Estimated divergence times of the principal clades of M. megacephalus (c. 2-4 Ma) indicate that these kangaroo mice were Pleistocene invaders into the Great Basin coincident with the formation of sandy habitats. The north-south and web patterns from directional analyses reveal past routes of gene flow and provide evidence for source-sink population regulation. The web pattern was not seen in the companion study of M. pallidus. Significant haplotype-area curves indicate that the distributional islands are now in approximate genetic equilibrium. The patterns described here are potentially useful to conservation biologists and wildlife managers and may serve as a model for other sand-obligate organisms of the Great Basin.  相似文献   
45.
Abstract Hip holes are shallow, reniform‐shaped depressions found next to the trunks of many trees and shrubs in arid and semi‐arid Australia. They are constructed by kangaroos (Macropus spp.), who use them as diurnal resting sites, particularly during hot weather. Physical and chemical properties of soils in hip holes were compared with non‐hole microsites adjacent to the trunk (‘trunk’), microsites below the canopy (‘canopy’) and microsites out in the open (‘open’) under two trees (Eucalyptus intertexta, Alectryon oleifolius) and one shrub (Dodonaea viscosa) in a semi‐arid woodland in eastern Australia. Overall, there were few effects under D. viscosa apart from a greater (10‐fold) mass of litter in the hip holes compared with the trunk microsite. Hip holes under E. intertexta and A. oleifolius, however, contained six times more dung compared with the trunk microsite. For the two tree species, soils in the hip holes were significantly more erodible, as measured by aggregation levels, compared with the other microsites, but there were no significant differences in bulk density nor pH. Steady‐state infiltration rates at the hip hole and trunk microsites were significantly greater than those in the open, but there was no significant hip hole effect. Soils in the hip holes contained greater levels of exchangeable calcium and magnesium (E. intertexta) and greater exchangeable sodium (A. oleifolius) compared with trunk microsites. Hip holes under E. intertexta contained approximately 68% more organic carbon, total carbon and nitrogen, and 86% more sulfur compared with trunk microsites. Similarly, hip holes under A. oleifolius contained on average 38% more organic and total carbon, and 47% more nitrogen than trunk microsites. Given the density of hip holes and their impact on soil chemistry, kangaroos are considered to be important elements in the maintenance of heterogeneity in these woodlands.  相似文献   
46.
The Australasian marsupial family Macropodidae includes potoroos and bettongs (Potoroinae) as well as larger kangaroos, wallabies, and pademelons (Macropodinae). Perhaps the most enigmatic macropodid is the banded hare wallaby, Lagostrophus fasciatus, a taxon listed as vulnerable by the IUCN. Lagostrophus had traditionally been grouped as a sister-taxon to hare wallabies (Lagorchestes), in a clade with hypsodont macropodines, or intercalated in some other fashion within Macropodinae. Flannery (1983, 1989) proposed a radically different hypothesis wherein Lagostrophus is outside of Macropodinae and is more closely related to extinct sthenurine (short-faced) kangaroos. Given this controversy, we addressed the phylogenetic placement of the banded hare wallaby using molecular sequences for three mitochondrial genes (12S rRNA, valine tRNA, 16S rRNA) and one nuclear gene (protamine P1). Diverse phylogenetic methods all provided robust support for a macropodine clade that excludes the banded hare wallaby. The split between macropodines and the banded hare wallaby was estimated at approximately 20 million years ago (mya) using the Thorne/Kishino relaxed molecular clock method. Whereas our molecular results neither corroborate nor refute the sthenurine hypothesis, since all short-faced kangaroos and their immediate ancestors are extinct, the overriding implication of molecular phylogenetic analyses is manifest: the banded hare wallaby is the only living relict of an ancient kangaroo lineage. Regardless of its precise relationships, special efforts should be directed at conserving this unique and endangered taxon, which has not been recorded from mainland Australia since 1906 and is now restricted to two tiny islands off the coast of Western Australia.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1022697300092  相似文献   
47.
Aim Kangaroo mice, genus Microdipodops Merriam, are endemic to the Great Basin and include two species: M. pallidus Merriam and M. megacephalus Merriam. The pallid kangaroo mouse, M. pallidus, is a sand‐obligate desert rodent. Our principal intent is to identify its current geographical distribution and to formulate a phylogeographical hypothesis for this taxon. In addition, we test for orientation patterns in haplotype sharing for evidence of past episodes of movement and gene flow. Location The Great Basin Desert region of western North America, especially the sandy habitats of the Lahontan Trough and those in south‐central Nevada. Methods Mitochondrial DNA sequence data from portions of three genes (16S ribosomal RNA, cytochrome b, and transfer RNA for glutamic acid) were obtained from 98 individuals of M. pallidus representing 27 general localities sampled throughout its geographical range. Molecular sequence data were analysed using neighbour‐joining, maximum‐parsimony, maximum‐likelihood and Bayesian methods of phylogenetic inference. Directional analysis of phylogeographical patterns, a novel method, was used to examine angular measurements of haplotype sharing between pairs of localities to detect and quantify historical events pertaining to movement patterns and gene flow. Results Collecting activities showed that M. pallidus is a rather rare rodent (mean trapping success was 2.88%), and its distribution has changed little from that determined three‐quarters of a century ago. Two principal phylogroups, distributed as eastern and western moieties, are evident from the phylogenetic analyses (mean sequence divergence for cytochrome b is c. 8%). The western clade shows little phylogenetic structure and seems to represent a large polytomy. In the eastern clade, however, three subgroups are recognized. Nine of the 42 unique composite haplotypes are present at two or more localities and are used for the orientation analyses. Axial data from haplotype sharing between pairwise localities show significant, non‐random angular patterns: a north‐west to south‐east orientation in the western clade, and a north‐east to south‐west directional pattern in the eastern clade. Main conclusions The geographical range of M. pallidus seems to be remarkably stable in historical times and does not show a northward (or elevationally upward) movement trend, as has been reported for some other kinds of organism in response to global climate change. The eastern and western clades are likely to represent morphologically cryptic species. Estimated times of divergence of the principal clades of M. pallidus (4.38 Ma) and between M. pallidus and M. megacephalus (8.1 Ma; data from a related study) indicate that kangaroo mice diverged much earlier than thought previously. The phylogeographical patterns described here may serve as a model for other sand‐obligate members of the Great Basin Desert biota.  相似文献   
48.
For species that cannot seek cover to escape predators, aggregation becomes an important strategy to reduce predation risk. However, aggregation may not be entirely beneficial because aggregated animals may compete for access to limited resources and might even attract predators. Available evidence suggests that foraging competition influences time allocation in large-bodied macropodid marsupials, but previous studies have focused primarily on species in areas with protective cover. We studied red kangaroos, a species often found in open country without noticeable cover, to determine whether they experienced a net benefit by aggregation. Red kangaroos varied their time allocation as a function of group size and, importantly, more variation in time allocation to vigilance and foraging was explained by non-linear models than by linear models. This suggests red kangaroos directly translated the reduction of predation risk brought about by aggregation into greater time foraging and less time engaged in vigilance. We infer that red kangaroos received a net benefit by aggregation. Social species living in the open may be generally expected to rely on others to help manage predation risk. Communicated by K. Kotrschal  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号