首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   7篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   5篇
  2015年   1篇
  2014年   8篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1994年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1986年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
11.
Much of California's San Joaquin Valley is a desert and, like portions of other North American deserts, is experiencing an ecological shift from being dominated by ephemeral native forbs, with widely spaced shrubs, to fire-prone non-native annual grasses. Small terrestrial vertebrates, many of which are adapted to open desert habitats, are declining. One hypothesis is that the invasive plants contribute to the decline by altering vegetative structure. Although cattle may have originally been a factor in the establishment of these non-native plants, their grazing may benefit the terrestrial vertebrates by maintaining an open structure, especially during average or wet winters when the exotic grasses grow especially dense. We experimentally tested the effect of cattle grazing on invasive plants and a community of small vertebrates at a site in the southwestern San Joaquin Desert. We established and monitored 4 treatment (grazed) and 4 control (ungrazed) plots from 1997 to 2006, and assessed the abundances of blunt-nosed leopard lizards (Gambelia sila), giant kangaroo rats (Dipodomys ingens), short-nosed kangaroo rats (Dipodomys nitratoides nitratoides), and San Joaquin antelope squirrels (Ammospermophilus nelsoni), all of which are listed as threatened or endangered by state or federal agencies. We also recorded abundances of the non-protected western whiptail lizards (Aspidoscelis tigris), side-blotched lizards (Uta stansburiana), San Joaquin pocket mice (Perognathus inornatus inornatus), and Heermann's kangaroo rats (Dipdomys heermanni). Based on repeated measures analysis of variance (ANOVA) and a 0.05 alpha level, only Heermann's kangaroo rats showed a treatment effect; they were more abundant on the control plots. However, this effect could be accounted for by the natural re-establishment of saltbush (Atriplex spp.) on part of the study site. Saltbush return also favored western whiptail lizards and San Joaquin antelope squirrels. A regression analysis indicated that populations of blunt-nosed leopard lizard and giant kangaroo rat increased significantly faster in grazed plots than the ungrazed controls, and abundances of 6 of 8 species were negatively correlated with increased residual dry matter. With relaxed alpha values to decrease Type II error, populations of blunt-nosed leopard lizards (500% greater), San Joaquin antelope squirrels (85% greater), and short-nosed kangaroo rats (73% greater) increased significantly on grazed plots over the course of the study compared to ungrazed plots. We did not find grazing to negatively affect abundance of any species we studied. When herbaceous cover is low during years of below average rainfall in deserts and other arid areas, grazing may not be necessary to maintain populations of small vertebrates. However, if cattle grazing is closely monitored in space and time to minimize adverse effects on the habitat, it could be an effective tool to control dense stands of non-native grasses and benefit native wildlife. © 2011 The Wildlife Society.  相似文献   
12.
13.

Questions

Understanding how livestock grazing alters plant composition in low productivity environments is critical to managing livestock sustainably alongside native and introduced wild herbivore populations. We asked four questions: (1) does recent livestock and rabbit grazing reduce some plant attributes more strongly than others; (2) does grazing by introduced herbivores (i.e. livestock and rabbits) affect plants more strongly than native herbivores (i.e. kangaroos); (3) do the effects of recent livestock grazing differ from the legacy effects of livestock grazing; and (4) does the probability of occurrence of exotic plants increase with increasing net primary productivity (NPP)?

Location

South‐eastern Australia.

Methods

We measured the recent grazing activity of co‐occurring livestock (cattle, sheep, goats), rabbits and kangaroos by counting faecal pellets; historic grazing activity by measuring livestock tracks; and derived NPP from satellite imagery. We used a hierarchical GLMM to simultaneously model the presence or absence (i.e. probability of occurrence) of all plant species as a function of their attributes (growth form, lifespan and origin) to assess their average response to recent grazing, historic grazing and productivity in a broad‐scale regional study.

Results

Recent and historic livestock grazing, rabbit grazing and increasing NPP reduced the average probability of occurrence of plant species, although responses varied among plant attributes. Both recent and historic livestock grazing strongly reduced the average probability of occurrence of native species, and forbs and geophytes, but differed in their relative effects on other growth forms. Recent livestock grazing, rabbit grazing and NPP had similar effects, strongly reducing native species and forbs, geophytes, shrubs and sub‐shrubs. The overall effects of recent kangaroo grazing were relatively weak, with no clear trends for any given plant attribute.

Conclusion

Our results highlight the complex nature of grazing by introduced herbivores compared with native herbivores on different plant attributes. Land managers need to be aware that domestic European livestock, rabbits and other free‐ranging introduced livestock such as goats have detrimental impacts on native plant communities. Our results also show that kangaroo grazing has a relatively benign effect on plant occurrence.  相似文献   
14.
We examined alternative hypotheses for the benefits of footdrummingin the presence of snakes by the banner-tailed kangaroo rat,Dipodomys spectabitis, by testing whether the target of thesignal includes conspecifics, the predator or both. Footdrummingrecorded in the field revealed that rats altered their footdrummingsignatures when drumming at snakes. In playback tests, however,neighbors failed to show any measurable change in behavior tobroadcasts of the snake drumming pattern, but mothers footdrummedsignificantly more than nonmothen in the presence of a tetheredsnake. Gopher snakes, Pituophis melanolsucus affinis, respondedto footdrumming vibrations created by a mechanical thumper.Nonhungry snakes avoided footdrumming, while hungry snakes approachedthe seismic footdrumming. Snakes decreased stalking rates asfootdrumming increased, but they spent more time stalking drummingthan nondnimming rats. We conclude that D. spectabilis footdrumsin individual defense and in parental care, rather than to warnadult conspecfics. Footdrumming deters pursuit by informingthe snake that the rat is alert and the chances of predationare low. We find little evidence that footdrumming startles,confuses, or harasses the snake. Hungry gopher snakes, however,may locate prey by eavesdropping on territorial footdrumming  相似文献   
15.
The reversibility of phenotypic evolution is likely to be strongly influenced by the ability of underlying developmental systems to generate ancestral traits. However, few studies have quantitatively linked these developmental dynamics to traits that reevolve. In this study, we assess how changes in the inhibitory cascade, a developmental system that regulates relative tooth size in mammals, influenced the loss and reversals of the posthypocristid, a molar tooth crest, in the kangaroo superfamily Macropodoidea. We find that posthypocristid loss is linked with reduced levels of posterior molar inhibition, potentially driven by selection for lophodont, higher‐crowned molar teeth. There is strong support for two posthypocristid reversals, each occurring after more than 15 million years of absence, in large‐bodied species of Macropus, and two giant extinct species of short‐faced sthenurine kangaroo (Procoptodon). We find that whereas primitive posthypocristid expression is linked to higher levels of posterior molar inhibition, reemergence is tied to a relative increase in third molar size associated with increasing body mass, producing molar phenotypes similar to those in mouse where the ectodysplasin pathway is upregulated. We argue that although shifts in the inhibitory cascade may enable reemergence, dietary ecology may limit the frequency of phylogenetic reversal.  相似文献   
16.
17.
Species distribution models have come under criticism for being too simplistic for making robust future forecasts, partly because they assume that climate is the main determinant of geographical range at large spatial extents and coarse resolutions, with non‐climate predictors being important only at finer scales. We suggest that this paradigm might be obscured by species movement patterns. To explore this we used contrasting kangaroo (family Macropodidae) case studies: two species with relatively small, stable home ranges (Macropus giganteus and M. robustus) and three species with more extensive, adaptive ranging behaviour (M. antilopinus, M. fuliginosus and M. rufus). We predicted that non‐climate predictors will be most influential to model fit and predictive performance at local spatial resolution for the former species and at landscape resolution for the latter species. We compared residuals autocovariate – boosted regression tree (RAC‐BRT) model statistics with and without species‐specific non‐climate predictors (habitat, soil, fire, water and topography), at local‐ and landscape‐level spatial resolutions (5 and 50 km). As predicted, the influence of non‐climate predictors on model fit and predictive performance (compared with climate‐only models) was greater at 50 compared with 5 km resolution for M. rufus and M. fuliginosus and the opposite trend was observed for M. giganteus. The results for M. robustus and M. antilopinus were inconclusive. Also notable was the difference in inter‐scale importance of climate predictors in the presence of non‐climate predictors. In conclusion, differences in autecology, particularly relating to space use, may contribute to the importance of non‐climate predictors at a given scale, not model scale per se. Further exploration of this concept across a range of species is encouraged and findings may contribute to more effective conservation and management of species at ecologically meaningful scales.  相似文献   
18.
Lethal control of wild dogs – that is Dingo (Canis lupus dingo) and Dingo/Dog (Canis lupus familiaris) hybrids – to reduce livestock predation in Australian rangelands is claimed to cause continental‐scale impacts on biodiversity. Although top predator populations may recover numerically after baiting, they are predicted to be functionally different and incapable of fulfilling critical ecological roles. This study reports the impact of baiting programmes on wild dog abundance, age structures and the prey of wild dogs during large‐scale manipulative experiments. Wild dog relative abundance almost always decreased after baiting, but reductions were variable and short‐lived unless the prior baiting programme was particularly effective or there were follow‐up baiting programmes within a few months. However, age structures of wild dogs in baited and nil‐treatment areas were demonstrably different, and prey populations did diverge relative to nil‐treatment areas. Re‐analysed observations of wild dogs preying on kangaroos from a separate study show that successful chases that result in attacks of kangaroos by wild dogs occurred when mean wild dog ages were higher and mean group size was larger. It is likely that the impact of lethal control on wild dog numbers, group sizes and age structures compromise their ability to handle large difficult‐to‐catch prey. Under certain circumstances, these changes sometimes lead to increased calf loss (Bos indicus/B. taurus genotypes) and kangaroo numbers. Rangeland beef producers could consider controlling wild dogs in high‐risk periods when predation is more likely and avoid baiting at other times.  相似文献   
19.
The giant kangaroo rat, Dipodomys ingens (Heteromyidae), is an endangered rodent that inhabits approximately 3% of its estimated historic range. Its current distribution is centered in two geographic areas, situated about 150 km apart, in south-central California. We sequenced a 293 base-pair fragment at the 5' end of the control region in 95 giant kangaroo rats from nine localities to examine the genetic structure of extant populations. We determine that mutations in this section of the control region follow a negative binominal distribution, rather than a Poisson. However, the distance between haplotypes is small enough that the difference between a tree that corrects for the non-Poisson distribution of mutations and one that does not, is minimal. This implies that the use of methods that assume a Poisson distribution of mutations, such as those based on coalescent theory, are justified. We find that the correlation between levels of genetic diversity and estimated census size is poor. This suggests that population sizes have fluctuated over time or that populations have not been isolated from one another, or both. We also examine the hierarchical structure of populations and find that the southern populations are not genetically subdivided but that there is significant subdivision between northern and southern populations and between some northern subpopulations. The phylogeographic relationship between northern and southern populations can primarily be attributed to isolation by distance, although the time since divergence between them appears to be less than the age of either. To examine the phylogeographic relationships in more detail we construct a minimum spanning tree based on Tamura-Nei gamma-corrected distances and superimpose on it the geographic position of haplotypes. This reveals that there is more genetic distance between some northern haplotypes than between any northern and southern haplotypes, despite the geographic distance separating north from south and the larger size of the southern population. It also reveals that one northern population, in the Panoche Valley, contains old allelic lineages and shares ancestral polymorphism with several other populations. It also shows that two, small, geographically remote populations contain a surprising amount of genetic diversity, but that different population/geographic processes have affected the structure of that diversity. We estimate the average migration rate among all populations to be 7.5 per generation, and conclude that a disproportionate number of migration events involve gene flow with one northern population, the Panoche Valley. We find evidence for the hypothesis that there has been an increase in population size in the remaining populations in the north and suggest that the Panoche Valley could play a role in these expansions. Finally we discuss the probabilitiy that the genetic structure of the southern populations has been affected by fluctuations in size. These results are briefly compared to other studies on the genetic structure of rodent populations.  相似文献   
20.
Possible mechanisms of primary fluid formation by macropodine parotid glands were investigated in anaesthetized red kangaroos using ion transport inhibitors. Carotid plasma amiloride concentrations of 0.05–0.5 mmol·l-1 progressively reduced a stable acetylcholine-evoked half-maximal flow rate of 2.0±0.04 to 0.22±0.024 ml·min-1 (mean±SEM). Concurrently, saliva bicarbonate concentration and secretion fell (135±1.6 to 67±1.7 mmol·l-1 and 272±7.6 to 15±2.6 mol·min-1, respectively); [phosphate], [chloride] and [sodium] rose and [potassium] and osmolality were unaltered. High-rate cholinergic stimulation did not increase saliva flow beyond 11±1.0% of that for equivalent pre-amiloride stimulation. Equipotent levels of amiloride and methazolamide given concurrently were no more effective at blocking flow and bicarbonate secretion than when given separately. Furosemide (up to 2 mmol·l-1), bumetanide (up to 0.2 mmol·l-1) and ethacrynate (1 mmol·l-1) in carotid plasma had no effect on salivary flow or ion concentrations. During methazolamide blockade, furosemide did not curtail the concurrent increase in salivary [chloride]. Chlorothiazide at 0.25–1.0 mmol·l-1 caused progressive depression of saliva flow and [bicarbonate], and elevation of [chloride]. 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid at 0.1 mmol·l-1 was without effect, whereas at 0.5 mmol·l-1 it stimulated fluid secretion and increased saliva [protein], [sodium], [potassium], [bicarbonate] and osmolality. Concurrently, mean arterial blood pressure and pulse pressure fell and heart rate, haematocrit and carotid artery plasma flow rose. These responses were absent if saliva flow was kept constant by reduction in cholinergic stimulation during 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid administration. It is concluded that secretion of primary fluid by the kangaroo parotid is initiated mainly (>90%) by secretion of bicarbonate which is formed in the endpiece cells from CO2 delivered by the circulation. No evidence was found for initiation of fluid secretion by chloride transport involving basolateral Na+-K+-2Cl- symports, Na+-Cl- symports or Cl-/HCO 3 - antiports.Abbreviations CA carbonic anhydrase - CAI carbonic anhydrase inhibitors - MAP mean arterial blood pressure - PAH p-aminohippurate - SITS 4-acetamido-4-isothiocyanatostilbene-2,2 disulphonic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号