首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2036篇
  免费   194篇
  国内免费   55篇
  2285篇
  2024年   8篇
  2023年   76篇
  2022年   68篇
  2021年   108篇
  2020年   79篇
  2019年   105篇
  2018年   90篇
  2017年   66篇
  2016年   75篇
  2015年   107篇
  2014年   140篇
  2013年   134篇
  2012年   82篇
  2011年   99篇
  2010年   83篇
  2009年   142篇
  2008年   120篇
  2007年   127篇
  2006年   139篇
  2005年   89篇
  2004年   76篇
  2003年   59篇
  2002年   37篇
  2001年   36篇
  2000年   17篇
  1999年   17篇
  1998年   11篇
  1997年   11篇
  1996年   15篇
  1995年   12篇
  1994年   15篇
  1993年   10篇
  1992年   2篇
  1991年   9篇
  1990年   3篇
  1989年   1篇
  1988年   3篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有2285条查询结果,搜索用时 15 毫秒
111.
A new paradigm is proposed for modeling biomacromolecular interactions and complex formation in solution (protein-protein interactions so far in this report) that constitutes the scaffold of the automatic system MIAX (acronym for Macromolecular Interaction Assessment X). It combines in a rational way a series of computational methodologies, the goal being the prediction of the most native-like protein complex that may be formed when two isolated (unbound) protein monomers interact in a liquid environment. The overall strategy consists of first inferring putative precomplex structures by identification of binding sites or epitopes on the proteins surfaces and a simultaneous rigid-body docking process using geometric instances alone. Precomplex configurations are defined here as all those decoys the interfaces of which comply substantially with the inferred binding sites and whose free energy values are lower. Retaining all those precomplex configurations with low energies leads to a reasonable number of decoys for which a flexible treatment is amenable. A novel algorithm is introduced here for automatically inferring binding sites in proteins given their 3-D structure. The procedure combines an unsupervised learning algorithm based on the self-organizing map or Kohonen network with a 2-D Fourier spectral analysis. To model interaction, the potential function proposed here plays a central role in the system and is constituted by empirical terms expressing well-characterized factors influencing biomacromolecular interaction processes, essentially electrostatic, van der Waals, and hydrophobic. Each of these procedures is validated by comparing results with observed instances. Finally, the more demanding process of flexible docking is performed in MIAX embedding the potential function in a simulated annealing optimization procedure. Whereas search of the entire configuration hyperspace is a major factor precluding hitherto systems from efficiently modeling macromolecular interaction modes and complex structures, the paradigm presented here may constitute a step forward in the field because it is shown that a rational treatment of the information available from the 3-D structure of the interacting monomers combined with conveniently selected computational techniques can assist to elude search of regions of low probability in configuration space and indeed lead to a highly efficient system oriented to solve this intriguing and fundamental biologic problem.  相似文献   
112.
Pazos F  Valencia A 《Proteins》2002,47(2):219-227
Deciphering the interaction links between proteins has become one of the main tasks of experimental and bioinformatic methodologies. Reconstruction of complex networks of interactions in simple cellular systems by integrating predicted interaction networks with available experimental data is becoming one of the most demanding needs in the postgenomic era. On the basis of the study of correlated mutations in multiple sequence alignments, we propose a new method (in silico two-hybrid, i2h) that directly addresses the detection of physically interacting protein pairs and identifies the most likely sequence regions involved in the interactions. We have applied the system to several test sets, showing that it can discriminate between true and false interactions in a significant number of cases. We have also analyzed a large collection of E. coli protein pairs as a first step toward the virtual reconstruction of its complete interaction network.  相似文献   
113.
Cells can usefully be equated to autocatalytic networks that increase in mass and then divide. To begin to model relationships between autocatalytic networks and cell division, we have written a program of artificial chemistry that simulates a cell fed by monomers. These monomers are symbols that can be assembled into linear (non-branched) polymers to give different lengths. A reaction is catalysed by a particular polymer or 'enzyme' that may itself be a reactant of that reaction (autocatalysis). These reactions are only studied within the confines of the 'cell' or 'reaction chamber'. There is a flux of material through the cell and eventually the mass of polymers reaches a threshold at which we analyse the cell. Our results indicate a similarity between the connectivity of the reaction network and that of real metabolic networks. Developing the model will entail attributing increased probabilities of reactions to polymers that are colocalised to evaluate the consequences of the dynamics of large assemblies of diverse molecules (hyperstructures) and of cell division.  相似文献   
114.
It has long been known that evolutionary trees (phylogenies) can be estimated by comparing the DNA or protein sequences of homologous genes across different organisms. More recently, attempts have been made to estimate phylogenies by comparing entire genomes. These attempts have focused largely on comparisons of gene content and gene order. Many different methods have been proposed for making these comparisons. These include primarily maximum parsimony and distance methods, although more recently maximum likelihood and Bayesian methods are being developed. This paper discusses each of these approaches in turn, including their merits and limitations, and any software which is available to make use of them.  相似文献   
115.
A prospective study was undertaken to investigate the potential value of morphometry and artificial neural networks (ANN) for the discrimination of benign and malignant gastric lesions. Two thousand five hundred cells from 23 cases of cancer, 19 cases of gastritis and 58 cases of ulcer were selected as a training set, and an additional 8524 cells from an equal number of cases of cancer, gastritis and ulcer were used as a test set. Images of routine processed gastric smears stained by the Papanicolaou technique were processed by a custom image analysis system. The application of the learning vector quantization (LVQ) classifier enabled correct classification of > 97% of benign cells and > 95% of malignant cells, obtaining an overall accuracy of > 97%. This study presents the capabilities of ANN, and also indicates that ANN and image morphometry may offer useful information on the potential of malignancy in gastric cells.  相似文献   
116.
Our ability to model spatial distributions of fish populations is reviewed by describing the available modelling tools. Ultimate models of the individual's motivation for behavioural decisions are derived from evolutionary ecology. Mechanistic models for how fish sense and may respond to their surroundings are presented for vision, olfaction, hearing, the lateral line and other sensory organs. Models for learning and memory are presented, based both upon evolutionary optimization premises and upon neurological information processing and decision making. Functional tools for modelling behaviour and life histories can be categorized as belonging to an optimization or an adaptation approach. Among optimization tools, optimal foraging theory, life history theory, ideal free distribution, game theory and stochastic dynamic programming are presented. Among adaptation tools, genetic algorithms and the combination with artificial neural networks are described. The review advocates the combination of evolutionary and neurological approaches to modelling spatial dynamics of fish.  相似文献   
117.
Being able to design genetic regulatory networks (GRNs) to achieve a desired cellular function is one of the main goals of synthetic biology. However, determining minimal GRNs that produce desired time-series behaviors is non-trivial. In this paper, we propose a ‘top-down’ approach to evolving small GRNs and then use these to recursively boot-strap the identification of larger, more complex, modular GRNs. We start with relatively dense GRNs and then use differential evolution (DE) to evolve interaction coefficients. When the target dynamical behavior is found embedded in a dense GRN, we narrow the focus of the search and begin aggressively pruning out excess interactions at the end of each generation. We first show that the method can quickly rediscover known small GRNs for a toggle switch and an oscillatory circuit. Next we include these GRNs as non-evolvable subnetworks in the subsequent evolution of more complex, modular GRNs. Successful solutions found in canonical DE where we truncated small interactions to zero, with or without an interaction penalty term, invariably contained many excess interactions. In contrast, by incorporating aggressive pruning and the penalty term, the DE was able to find minimal or nearly minimal GRNs in all test problems.  相似文献   
118.
It has been shown that, by adding a chaotic sequence to the weight update during the training of neural networks, the chaos injection-based gradient method (CIBGM) is superior to the standard backpropagation algorithm. This paper presents the theoretical convergence analysis of CIBGM for training feedforward neural networks. We consider both the case of batch learning as well as the case of online learning. Under mild conditions, we prove the weak convergence, i.e., the training error tends to a constant and the gradient of the error function tends to zero. Moreover, the strong convergence of CIBGM is also obtained with the help of an extra condition. The theoretical results are substantiated by a simulation example.  相似文献   
119.
In his review of neural binding problems, Feldman (Cogn Neurodyn 7:1–11, 2013) addressed two types of models as solutions of (novel) variable binding. The one type uses labels such as phase synchrony of activation. The other (‘connectivity based’) type uses dedicated connections structures to achieve novel variable binding. Feldman argued that label (synchrony) based models are the only possible candidates to handle novel variable binding, whereas connectivity based models lack the flexibility required for that. We argue and illustrate that Feldman’s analysis is incorrect. Contrary to his conclusion, connectivity based models are the only viable candidates for models of novel variable binding because they are the only type of models that can produce behavior. We will show that the label (synchrony) based models analyzed by Feldman are in fact examples of connectivity based models. Feldman’s analysis that novel variable binding can be achieved without existing connection structures seems to result from analyzing the binding problem in a wrong frame of reference, in particular in an outside instead of the required inside frame of reference. Connectivity based models can be models of novel variable binding when they possess a connection structure that resembles a small-world network, as found in the brain. We will illustrate binding with this type of model with episode binding and the binding of words, including novel words, in sentence structures.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号