首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   185篇
  免费   34篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   7篇
  2018年   10篇
  2017年   10篇
  2016年   7篇
  2015年   10篇
  2014年   6篇
  2013年   15篇
  2012年   6篇
  2011年   10篇
  2010年   9篇
  2009年   11篇
  2008年   14篇
  2007年   8篇
  2006年   13篇
  2005年   4篇
  2004年   7篇
  2003年   9篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   4篇
  1998年   1篇
  1997年   5篇
  1994年   3篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1981年   3篇
  1980年   2篇
  1978年   1篇
排序方式: 共有219条查询结果,搜索用时 31 毫秒
181.
Morphological analysis of the skull of the subterranean rodent Ctenomys , a highly speciose genus which uses both claws and teeth when digging, shows that for a broad range of species size, scaling was associated with both variation and maintenance of shape. Our results show that the angle of incisor procumbency (AIP), a character largely viewed as an adaptation to digging with teeth, is highly variable. We found a non-significant relationship between AIP and basicranial axis (basioccipital + basisphenoid) length, a measure of overall skull size. Accordingly, both small and large Ctenomys species possess either high or low AIP. A significant relationship between AIP and diastema length, given the rostral allometry seen in Ctenomys , suggests that hypermorphosis to a certain extent influences AIP. However, the roots of the incisor are lateral to those of the cheek teeth and their position may thus shift freely. This observation supports the notion that skull structural design, and to a certain extent rostral allometry, underlies variation in AIP. On the other hand, the positive allometry of incisor width and thickness indicates that, in larger species, proportionately powerful incisors are able to resist greater bending forces. We found that the out-lever arm of the jaw adductor muscles scales with positive allometry against basicranial axis length. However, we found an isometric relationship between in- and out-lever arms. In this case, conservation of skull proportions, regardless of variation in size, is a feature possibly related to the maintenance of an effective tooth digging capability. Functional and ecological data are discussed when assessing the implications of size and shape variation in the skull of Ctenomys .  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 78 , 85−96.  相似文献   
182.
Adaptive radiations are characterized by adaptive diversification intertwined with rapid speciation within a lineage resulting in many ecologically specialized, phenotypically diverse species. It has been proposed that adaptive radiations can originate from ancestral lineages with pronounced phenotypic plasticity in adaptive traits, facilitating ecologically driven phenotypic diversification that is ultimately fixed through genetic assimilation of gene regulatory regions. This study aimed to investigate how phenotypic plasticity is reflected in gene expression patterns in the trophic apparatus of several lineages of East African cichlid fishes, and whether the observed patterns support genetic assimilation. This investigation used a split brood experimental design to compare adaptive plasticity in species from within and outside of adaptive radiations. The plastic response was induced in the crushing pharyngeal jaws through feeding individuals either a hard or soft diet. We find that nonradiating, basal lineages show higher levels of adaptive morphological plasticity than the derived, radiated lineages, suggesting that these differences have become partially genetically fixed during the formation of the adaptive radiations. Two candidate genes that may have undergone genetic assimilation, gif and alas1, were identified, in addition to alterations in the wiring of LPJ patterning networks. Taken together, our results suggest that genetic assimilation may have dampened the inducibility of plasticity related genes during the adaptive radiations of East African cichlids, flattening the reaction norms and canalizing their feeding phenotypes, driving adaptation to progressively more narrow ecological niches.  相似文献   
183.
Scolecodonts provide fossil evidence of the evolution and diversification of jaw‐bearing polychaetes from the latest Cambrian onwards. However, their record before the Darriwilian (Middle Ordovician) is scarce worldwide, which limits our understanding of key evolutionary events. One such event is the emergence of taxa possessing the asymmetrical labidognath‐type jaw apparatus architecture, which became common in the Middle Ordovician and is often dominant throughout the Palaeozoic. Here, we document a small collection of Dapingian scolecodonts from the Capillas section, Sierras Subandinas, north‐western Argentina. The isolated elements recovered allowed us to reconstruct the distinctive jaw apparatus, and to introduce a new taxon, Andiprion paxtonae gen. et sp. nov. The maxillary apparatus of Andiprion is intermediate between the symmetrognath type of the Early Ordovician Kadriorgaspis and the labidognath type that is present in polychaetaspids and related taxa. The apparatus architecture of Andiprion corresponds best to the labidognath type, but the morphology of the individual jaws suggests that it may be the most primitive representative of this lineage currently known. We propose that Andiprion‐like forms were ancestral to polychaetaspids, polychaeturids and ramphoprionids. The Capillas collection provides supporting evidence for the evolutionary homology of the ‘basal plate’ and the left first maxilla. Thus the labidognath‐type asymmetry, with an unpaired left maxilla III, developed as a result of gradual reduction in size of the first right jaw (‘basal plate’) in front of the carriers, instead of loss or fusion of anterior maxillae.  相似文献   
184.
185.
Convergence is widely regarded as compelling evidence for adaptation, often being portrayed as evidence that phenotypic outcomes are predictable from ecology, overriding contingencies of history. However, repeated outcomes may be very rare unless adaptive landscapes are simple, structured by strong ecological and functional constraints. One such constraint may be a limitation on body size because performance often scales with size, allowing species to adapt to challenging functions by modifying only size. When size is constrained, species might adapt by changing shape; convergent shapes may therefore be common when size is limiting and functions are challenging. We examine the roles of size and diet as determinants of jaw shape in Sciuridae. As expected, size and diet have significant interdependent effects on jaw shape and ecomorphological convergence is rare, typically involving demanding diets and limiting sizes. More surprising is morphological without ecological convergence, which is equally common between and within dietary classes. Those cases, like rare ecomorphological convergence, may be consequences of evolving on an adaptive landscape shaped by many‐to‐many relationships between ecology and function, many‐to‐one relationships between form and performance, and one‐to‐many relationships between functionally versatile morphologies and ecology. On complex adaptive landscapes, ecological selection can yield different outcomes.  相似文献   
186.
本实验使用连续单相方波脉冲(波宽:0.6ms,频率:80-150Hz,电压:1-7V)刺激麻醉兔延髓孤束核、最后区、网状结构内2/3区域的背侧部以及三叉脊束核等区域,观察对皮层诱发性下颌运动的影响。刺激孤束核、最后区以及网状结构,抑制皮层诱发性下颌运动。刺激三叉脊束核常使皮层诱发性下颌运动增强。  相似文献   
187.
Jaw mechanics and dietary breadth in California grunion Leuresthes tenuis and Gulf grunion Leuresthes sardina were compared with three other members of the tribe Atherinopsini to test whether these two species have evolved a novel jaw protrusion that might be associated with feeding narrowly on abundant prey near spawning beaches. Quantitative comparison of cleared‐and‐stained specimens of five members of the atherinopsine clade showed that, compared with false grunion Colpichthys regis, topsmelt Atherinops affinis and jacksmelt Atherinopsis californiensis, L. tenuis and L. sardina have longer, more downwardly directed premaxillary protrusion, expanded dentary and premaxillary bones, greater lower jaw rotation and larger premaxilla–vomer separation. Leuresthes tenuis showed greater differences than L. sardina in these features. Comparison of the gut contents of L. tenuis and A. affinis with zooplankton samples collected simultaneously with these fishes in the water column within 1 km of shore showed that, as predicted, L. tenuis fed predominantly on mysid crustaceans and had a narrower diet than A. affinis. High‐speed video analysis showed that L. tenuis exhibits a mean time to maximum jaw protrusion c. 2·5 times shorter than that of A. affinis. The grunion sister species, especially L. tenuis, have evolved suction feeding that may allow efficient feeding on common, evasive prey near spawning sites. The morphological traits seen in both species of Leuresthes signify a marked difference from their closest relatives in prey capture and suggest a type of jaw protrusion not yet seen in cyprinodontiforms or perciforms.  相似文献   
188.
The skull of squamates has many functions, with food acquisition and ingestion being paramount. Snakes vary interspecifically in the frequency, size, and types of prey that are consumed. Natural selection should favor phenotypes that minimize the costs of energy acquisition; therefore, trophic morphology should reflect a snake's primary prey type to enhance some aspect of feeding performance. I measured 19 cranial variables for six natricine species that vary in the frequency with which they consume frogs and fish. Both conventional and phylogenetically corrected analyses indicated that fish‐eating snakes have relatively longer upper and lower jaw elements than frog‐eating snakes, which tended to have broader skull components. I also compared the ratio of the in‐lever to the out‐lever lengths of the jaw‐closing mechanism [jaw mechanical advantage (MA)] among species. Fish‐eating snakes had significantly lower MAs in the jaws than did the frog‐eating snakes. This result suggests that piscivores have faster closing jaws and that the jaws of frog‐eating snakes have higher closing forces. Cranial morphology and the functional demands of prey capture and ingestion appear to be associated with primary prey type in natricine snakes. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
189.
This study tests the hypothesis that decreased canine crown height in catarrhines is linked to (and arguably caused by) decreased jaw gape. Associations are characterized within and between variables such as upper and lower canine height beyond the occlusal plane (canine overlap), maximum jaw gape, and jaw length for 27 adult catarrhine species, including 539 living subjects and 316 museum specimens. The data demonstrate that most adult male catarrhines have relatively larger canine overlap dimensions and gapes than do conspecific females. For example, whereas male baboons open their jaws maximally more than 110% of jaw length, females open about 90%. Humans and hylobatids are the exceptions in that canine overlap is nearly the same in both the sexes and so is relative gape (ca. 65% for humans and 110% for hylobatids). A correlation analysis demonstrates that a large portion of relative gape (maximum gape/projected jaw length) is predicted by relative canine overlap (canine overlap/jaw length). Relative gape is mainly a function of jaw muscle position and/or jaw muscle‐fiber length. All things equal, more rostrally positioned jaw muscles and/or shorter muscle fibers decrease gape and increase bite force during the power stroke of mastication, and the net benefit is to increase the mechanical efficiency during chewing. Similarly, more caudally positioned muscles and/or longer muscle fibers increase the amount of gape and decrease bite force. Overall, the data support the hypothesis that canine reduction in early hominins is functionally linked to decreased gape and increased mechanical efficiency of the jaws. Am J Phys Anthropol, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
190.
Synopsis The ecomorphological relationships between the oral jaws and food spectra were highlighted in 34 species of Gulf of California blennioid fishes (5 Tripterygiidae, 13 Labrisomidae, 11 Chaenopsidae and 5 Blenniidae). Twenty-nine species are microcarnivorous, two are omnivorous browsers, two are algae grazers and one was an ‘ectoparasite’ feeder. The spectrum of oral (as opposed to pharyngeal) jaw (OJA) morphology ranges from plesiomorphic, suction-feeding (relatively large, protrusible jaws, with many coniform-caniniform teeth) to apomorphic, biting (relatively small, non protrusible jaws, with a single row of incisiform teeth). As species with similar morphology may widely differ in food, it is concluded, that morphology is not a reliable predictor for ecology in this case. With the exception of a few specialists, species with apomorphic, biting OJA utilize sessile items in addition to mobile categories and thus show a higher food diversity as compared to species with plesiomorphic OJA. Thus in the present case morphological differentiation goes along with ecological generalization. Only three blenniid species with the most apomorphic OJA may be considered as specialized also with regard to food resource utilization. Transformation of morphological characters and the ecological role of the OJA of blennioids may serve as a model to illustrate the steps required to achieve a biting-browsing and grazing feeding apparatus in many taxa of modern acanthopterygian reef fishes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号