首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   314篇
  免费   37篇
  国内免费   15篇
  2024年   1篇
  2023年   8篇
  2022年   10篇
  2021年   12篇
  2020年   19篇
  2019年   19篇
  2018年   17篇
  2017年   12篇
  2016年   15篇
  2015年   13篇
  2014年   14篇
  2013年   12篇
  2012年   8篇
  2011年   12篇
  2010年   9篇
  2009年   19篇
  2008年   10篇
  2007年   8篇
  2006年   6篇
  2005年   16篇
  2004年   16篇
  2003年   7篇
  2002年   12篇
  2001年   10篇
  2000年   10篇
  1999年   6篇
  1998年   9篇
  1997年   1篇
  1996年   3篇
  1995年   3篇
  1994年   8篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   8篇
  1988年   5篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1971年   1篇
  1958年   1篇
排序方式: 共有366条查询结果,搜索用时 62 毫秒
141.
A triple-tracer method was developed to provide absolute fluxes contributing to endogenous glucose production and hepatic tricarboxylic acid (TCA) cycle fluxes in 24-h-fasted rats by (2)H and (13)C nuclear magnetic resonance (NMR) analysis of a single glucose derivative. A primed, intravenous [3,4-(13)C(2)]glucose infusion was used to measure endogenous glucose production; intraperitoneal (2)H(2)O (to enrich total body water) was used to quantify sources of glucose (TCA cycle, glycerol, and glycogen), and intraperitoneal [U-(13)C(3)] propionate was used to quantify hepatic anaplerosis, pyruvate cycling, and TCA cycle flux. Plasma glucose was converted to monoacetone glucose (MAG), and a single (2)H and (13)C NMR spectrum of MAG provided the following metabolic data (all in units of micromol/kg/min; n = 6): endogenous glucose production (40.4+/-2.9), gluconeogenesis from glycerol (11.5+/-3.5), gluconeogenesis from the TCA cycle (67.3+/-5.6), glycogenolysis (1.0+/-0.8), pyruvate cycling (154.4+/-43.4), PEPCK flux (221.7+/-47.6), and TCA cycle flux (49.1+/-16.8). In a separate group of rats, glucose production was not different in the absence of (2)H(2)O and [U-(13)C]propionate, demonstrating that these tracers do not alter the measurement of glucose turnover.  相似文献   
142.
The abundance and biomass of benthic foraminifera are high in intertidal rocky‐shore habitats. However, the availability of food to support their high biomass has been poorly studied in these habitats compared to those at seafloor covered by sediments. Previous field and laboratory observations have suggested that there is diversity in the food preferences and modes of life among rocky‐shore benthic foraminifera. In this study, we used the stable nitrogen isotopic composition of amino acids to estimate the trophic position, trophic niche, and feeding strategy of individual foraminifera species. We also characterized the configuration and structure of the endobiotic microalgae in foraminifera using transmission electron microscopy, and we identified the origin of endobionts based on nucleotide sequences. Our results demonstrated a large variation in the trophic positions of different foraminifera from the same habitat, a reflection of endobiotic features and the different modes of life and food preferences of the foraminifera. Foraminifera did not rely solely on exogenous food sources. Some species effectively used organic matter derived from endobionts in the cell cytoplasm. The high biomass and species density of benthic foraminifera found in intertidal rocky‐shore habitats are thus probably maintained by the use of multiple nitrogen resources and by microhabitat segregation among species as a consequence.  相似文献   
143.
Drought is a great challenge to agricultural production, and cultivation of drought‐tolerant or water use‐efficient cultivars is important to ensure high biomass yields for bio‐refining and bioenergy. Here, we evaluated drought tolerance of four C3 species, Dactylis glomerata cvs. Sevenop and Amba, Festuca arundinacea cvs. Jordane and Kora, Phalaris arundinacea cvs. Bamse and Chieftain and Festulolium pabulare cv. Hykor, and two C4 species Miscanthus × giganteus and M. lutarioriparius. Control (irrigated) and drought‐treated plants were grown on coarse and loamy sand in 1 m2 lysimeter plots where rain was excluded. Drought periods started after harvest and lasted until 80% of available soil water had been used. Drought caused a decrease in dry matter yield (DM; P < 0.001) for all species and cultivars during the drought period. Cultivars Sevenop, Kora and Jordane produced DM at equal levels and higher than the other C3 cultivars in control and drought‐treated plots both during and after the drought period. Negative correlations were observed between stomatal conductance (gs) and leaf water potential (P < 0.01) and positive correlations between gs and DM (P < 0.05) indicating that gs might be suitable for assessment of drought stress. There were indications of positive associations between plants carbon isotope composition and water use efficiency (WUE) as well as DM under well‐watered conditions. Compared to control, drought‐treated plots showed increased growth in the period after drought stress. Thus, the drought events did not affect total biomass production (DMtotal) of the whole growing season. During drought stress and the whole growing season, WUE was higher in drought‐treated compared to control plots, so it seems possible to save water without loss of biomass. Across soil types, M. lutarioriparius had the highest DMtotal (15.0 t ha?1), WUEtotal (3.6 g L?1) and radiation use efficiency (2.3 g MJ?1) of the evaluated grasses.  相似文献   
144.
Phosphoenolpyruvate carboxykinase (PEPCK) from Ascophyllum nodosum (L.) Le Jolis was partially purified and characterized to investigate its role in inorganic carbon assimilation in macroalgae. Inorganic carbon isotopic disequilibrium studies showed that the carboxylation of phosphoenolpyruvate utilized CO2 rather than HCO3?as its source of inorganic carbon. This is consistent with the enzyme being a phosphoenolpyruvate carboxykinase rather than a phosphoenolpyruvate carboxylase. Pre-incubation with Mn2+alone activated PEPCK more effectively than when combinations of Mn2+, ADP and HCO3?were used as activators. Activation of PEPCK during catalysis was found not to occur. Although the activation of PEPCK reduced the Km for CO2 by a factor of 2.25, the value reported here of 1.084 mM CO2 for the activated enzyme at pH 7.0 is at the top of the range of previously reported values for brown algal PEPCK. The specific activity of PEPCK was increased from 0.268 μmol·min?1·mg?1in the crude extract to 33.03 μmol·min?1·mg?1in the partially purified preparations. Whether PEPCK can act as an initial carboxylating enzyme is discussed. Triton X-100 at 0.57% (v/v) was found to be the optimum detergent and concentration for the extraction of enzymes from A. nodosum. When high concentrations of detergents -were used, a low (NH4)2SO4 cut was required to remove the free detergent from solution, which was extracted by centrifugation. Q Sepharose was used to partially purify PEPCK and separate it from pyruvate kinase. Good protein separations were consistently obtained.  相似文献   
145.
We investigated variation in intrinsic water-use efficiency during the past century by analysing δ 13C in tree rings of beech growing in north-eastern France. Two different silvicultural systems were studied: high forest and coppice-with-standards. We studied separately effects related to the age of the tree at the time the ring was formed and effects attributable to environmental changes. At young ages, δ 13C shows an increase of more than 1‰. However, age-related trends differ in high forest and coppice-with-standards. Changes in microenvironmental variables during stand maturation, and physiological changes related to structural development of the trees with ageing, could explain these results. During the past century, δ 13C in tree rings shows a pattern of decline that is not paralleled by air δ 13C changes. Isotopic discrimination has significantly decreased from 18·1 to 16·4‰ in high forest and varied insignificantly between 17·4 and 16·9‰ in coppice-with-standards. As a consequence, intrinsic water-use efficiency has increased by 44% in high forest and 23% in coppice-with-standards during the past century. These results accord with the increased water-use efficiency observed in controlled experiments under a CO2-enriched atmosphere. However, other environmental changes, such as nitrogen deposition, may be responsible for such trends.  相似文献   
146.
The molecules‐in‐molecules (MIM) fragment‐based method has recently been adapted to evaluate the chiroptical (vibrational circular dichroism [VCD] and Raman optical activity [ROA]) spectra of large molecules such as peptides. In the MIM‐VCD and MIM‐ROA methods, the relevant higher energy derivatives of the parent molecule are assembled from the corresponding derivatives of smaller fragment subsystems. In addition, the missing long‐range interfragment interactions are accounted at a computationally less expensive level of theory (MIM2). In this work we employed the MIM‐VCD and MIM‐ROA fragment‐based methods to explore the evolution of the chiroptical spectroscopic characteristics of 310‐helix, α‐helix, β‐hairpin, γ‐turn, and β‐extended conformers of gas phase polyalanine (chain length n = 6–14). The different conformers of polyalanine show distinctive features in the MIM chiroptical spectra and the associated spectral intensities increase with evolution of system size. For a better understanding the site‐specific effects on the vibrational spectra, isotopic substitutions were also performed employing the MIM method. An increasing redshift with the number of isotopically labeled 13C=O functional groups in the peptide molecule was seen. For larger polypeptides, we implemented the two‐step‐MIM model to circumvent the high computational expense associated with the evaluation of chiroptical spectra at a high level of theory using large basis sets. The chiroptical spectra of α‐(alanine)20 polypeptide obtained using the two‐step‐MIM model, including continuum solvation effects, show good agreement with the full calculations and experiment. This benchmark study suggests that the MIM‐fragment approach can assist in predicting and interpreting chiroptical spectra of large polypeptides.  相似文献   
147.
A network model for the determination of tumor metabolic fluxes from 13C NMR kinetic isotopomer data has been developed and validated with perfused human DB-1 melanoma cells carrying the BRAF V600E mutation, which promotes oxidative metabolism. The model generated in the bonded cumomer formalism describes key pathways of tumor intermediary metabolism and yields dynamic curves for positional isotopic enrichment and spin-spin multiplets. Cells attached to microcarrier beads were perfused with 26 mm [1,6-13C2]glucose under normoxic conditions at 37 °C and monitored by 13C NMR spectroscopy. Excellent agreement between model-predicted and experimentally measured values of the rates of oxygen and glucose consumption, lactate production, and glutamate pool size validated the model. ATP production by glycolytic and oxidative metabolism were compared under hyperglycemic normoxic conditions; 51% of the energy came from oxidative phosphorylation and 49% came from glycolysis. Even though the rate of glutamine uptake was ∼50% of the tricarboxylic acid cycle flux, the rate of ATP production from glutamine was essentially zero (no glutaminolysis). De novo fatty acid production was ∼6% of the tricarboxylic acid cycle flux. The oxidative pentose phosphate pathway flux was 3.6% of glycolysis, and three non-oxidative pentose phosphate pathway exchange fluxes were calculated. Mass spectrometry was then used to compare fluxes through various pathways under hyperglycemic (26 mm) and euglycemic (5 mm) conditions. Under euglycemic conditions glutamine uptake doubled, but ATP production from glutamine did not significantly change. A new parameter measuring the Warburg effect (the ratio of lactate production flux to pyruvate influx through the mitochondrial pyruvate carrier) was calculated to be 21, close to upper limit of oxidative metabolism.  相似文献   
148.
Niche segregation between similar species will result from an avoidance of competition but also from environmental variability, including nowadays anthropogenic activities. Gulls are among the seabirds with greater behavioural plasticity, being highly opportunistic and feeding on a wide range of prey, mostly from anthropogenic origin. Here, we analysed blood and feather stable isotopes combined with pellet analysis to investigate niche partitioning between Audouin's gull Larus audouinii and yellow‐legged gull Larus michahellis breeding in sympatry at Deserta Island, southern Portugal, during 2014 and 2015. During the breeding season there was considerable overlap in the adults’ diet, as their stable isotope values of blood and primary feather (P1) did not differ, and their pellets were comprised mainly by marine fish species. However, Audouin's gulls presented higher occurrences of pelagic fish, while yellow‐legged gulls fed more on demersal fish, insects, and refuse. SIAR mixing models also estimated a higher proportion of demersal fish in the diet of yellow‐legged gulls. We also found differences between the two gull species in chicks’ feathers, suggesting that Audouin's gull adults selected prey with lower carbon isotope values to feed their young. Secondary feather (S8) of Audouin's gull presented higher isotope values compared to yellow‐legged gulls, indicating different foraging areas (δ13C) and/ or trophic levels (δ15N) between the two species in the non‐breeding season. During both the all‐year and non‐breeding periods the yellow‐legged gull showed a broader isotopic niche width than Audouin's gull in 2013, and in 2014 the two gull species exhibited different isotopic niche spaces. Our study suggests that both gull species foraged in association with fisheries during the breeding season. In this sense, a discard ban implemented under the new European Union Common Fisheries Policy may lead to a food shortage, therefore future research should closely monitor the population dynamics of Audouin's and yellow‐legged gulls.  相似文献   
149.
J. Coetzee  B. A. Fineran 《Protoplasma》1987,136(2-3):145-153
Summary The transfer of nutrients between host and parasite in mistletoes has generally been considered to occur via the xylem to xylem contacts at the host-parasite interface in the haustorial organ of attachment. A few workers, however, have recently begun to question this assumption and have suggested an alternative pathway of transport involving the intervening parenchyma cells which are often abundant in the parasite at the interface. But no morphological experimental evidence has yet been forthcoming in support of an apoplastic continuum across this interface between parasite and host.Our observations on the dwarf mistletoeKorthalsella lindsayi first indicate an absence of plasmodesmata at the interface, with the conclusion that symplastic transport between the two plants is not involved. However, application of apoplastic markers, such as Calcofluor white and lanthanum and uranyl ions, to the stem of the host results in the transfer of these tracers across the interface and into the tissues of the parasite. This demonstrates the existence of an apoplastic continuum between the two plants, and a pathway that is probably used in the normal transfer of water and other nutrients from host to parasite.From the apoplastic continuum provided by the walls of the haustorial parenchyma tissue, nutrients are transferred to the symplast for eventual distribution to other parts of the plant. Evidence for the active uptake of substances from the apoplast by the protoplasts of the parenchyma cells is shown by the convoluted appearance of the plasmalemma and its differentiation often into plasmatubules.  相似文献   
150.
Summary Transected ganglion cell axons from the adult retina are capable of reinnervating their central targets by growing into transplanted peripheral nerve (PN) segments. Injury of the optic nerve causes various metabolic and morphological changes in the retinal ganglion cell (RGC) perikarya and in the dendrites. The present work examined the dendritic trees of those ganglion cells surviving axotomy and of those whose severed axons re-elongated in PN grafts to reach either the superior colliculus (SC), transplanted SC, or transplanted autologous thigh muscle. The elaboration of the dendritic trees was visualized by means of the strongly fluorescent carbocyanine dye DiI, which is taken up by axons and transported to the cell bodies and from there to the dendritic branches. Alternatively, retinofugal axons regrowing through PN grafts were anterogradely filled from the eye cup with rhodamine B-isothiocyanate. The transection of the optic nerve resulted in characteristic changes in the ganglion cell dendrites, particularly in the degeneration of most of the terminal and preterminal dendritic branches. This occurred within the first 1 to 2 weeks following axotomy. The different types of ganglion cells appear to vary in their sensitivity to axotomy, as reflected by a rapid degeneration of certain cell dendrites after severance of the optic nerve. The most vulnerable cells were those with small perikarya and small dendritic fields (type II), whereas larger cells with larger dendritic fields (type I and III) were slower to respond and less dramatically affected. Regrowth of the lesioned axons in peripheral nerve grafts and reconnection of the retina with various tissues did not result in a significant immediate recovery of ganglion cell dendrites, although it did prevent some axotomized cells from further progression toward posttraumatic cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号