首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1879篇
  免费   237篇
  国内免费   304篇
  2024年   10篇
  2023年   28篇
  2022年   71篇
  2021年   69篇
  2020年   75篇
  2019年   78篇
  2018年   88篇
  2017年   106篇
  2016年   79篇
  2015年   84篇
  2014年   102篇
  2013年   127篇
  2012年   85篇
  2011年   102篇
  2010年   87篇
  2009年   109篇
  2008年   112篇
  2007年   102篇
  2006年   109篇
  2005年   111篇
  2004年   79篇
  2003年   71篇
  2002年   58篇
  2001年   53篇
  2000年   40篇
  1999年   38篇
  1998年   59篇
  1997年   38篇
  1996年   35篇
  1995年   30篇
  1994年   17篇
  1993年   35篇
  1992年   34篇
  1991年   14篇
  1990年   14篇
  1989年   17篇
  1988年   9篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   1篇
  1981年   6篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1975年   1篇
  1973年   1篇
排序方式: 共有2420条查询结果,搜索用时 343 毫秒
121.
Measurement of nitrogen isotopic composition (15N) of plants and soil nitrogen might allow the characteristics of N transformation in an ecosystem to be detected. We tested the measurement of 15N for its ability to provide a picture of N dynamics at the ecosystem level by doing a simple comparison of 15N between soil N pools and plants, and by using an existing model. 15N of plants and soil N was measured together with foliar nitrate reductase activity (NRA) and the foliar NO3 pool at two sites with different nitrification rates in a temperature forest in Japan. 15N of plants was similar to that of soil NO3 in the high-nitrification site. Because of high foliar NRA and the large foliar NO3 pool at this site, we concluded that plant 15N indicated a great reliance of plants on soil NO3 there. However, many 15N of soil N overlapped each other at the other site, and 15N could not provide definitive evidence of the N source. The existing model was verified by measured 15N of soil inorganic N and it explained the variations of plant 15N between the two sites in the context of relative importance of nitrification, but more information about isotopic fractionations during plant N uptake is required for quantitative discussions about the plant N source. The model applied here can provide a basis to compare 15N signatures from different ecosystems and to understand N dynamics.  相似文献   
122.
The spatial distribution and seasonal variation in the concentration and carbon isotopic composition of dissolved methane in a river–lake ecosystem were studied in Lake Biwa, Japan, and its tributary rivers. Methane concentrations in all subsystems examined were supersaturated with respect to the atmosphere. The epilimnion showed higher concentrations of dissolved methane than the hypolimnion in the pelagic zone. Peak methane concentrations were observed at the thermocline. The largest amount of methane in the pelagic water column was recorded at the end of a stagnant period, at which the bottom water of the sublittoral zone (30m in depth) exhibited increased methane concentration. Transect observation of dissolved methane revealed three methane peaks at different water depths in the lake, and river water and the sediments in littoral and sublittoral zones were suggested to be the corresponding sources. Water at the river mouth was replete with dissolved oxygen but also contained a high concentration of methane. The present results suggest that river water and littoral sediment are potential sources of dissolved methane in Lake Biwa, and other sources, such as internal waves, are responsible for increased methane in the pelagic zone at the end of stagnant periods. Carbon stable isotope analysis indicated that there were different sources of dissolved methane, although it was difficult to identify the origins due to high variation of the isotopic composition of methane from different sources.  相似文献   
123.
Planted silvo-pastoral systems are formed by sparing selected native trees when land is cleared for pasture establishment, or by planting selected species – often known agroforestry species – into the establishing pasture. Isolated trees within pastures and savannas are often associated with `resource islands', characterized by higher fertility and organic matter levels under the tree canopies. We here examine the processes underlying the differences in fertility and organic matter in a buffel grass (Cenchrus ciliaris L.) pasture that contained two tree species (Ziziphus joazeiro Mart., Spondias tuberosa Arruda Cam.) preserved from the native thorn forest and a planted agroforestry species (Prospois juliflora Swartz D.C). The objective is to distinguish effects of soil variability from those induced by the presence of trees or the planting of pasture. The 13C signatures of the original (largely C3) vegetation, the preserved and planted trees, and the planted C4 grass were used to distinguish the provenance of organic matter in the top soil (0–15 cm). This allowed the conclusion that all trees maintained C3 derived C at the original thorn forest level, while lower levels under pasture were due to mineralisation of organic matter. The net rates of forest-derived C loss under pasture varied with soil type amounting to between 25 and 50% in 13 years after pasture establishment. Only on Alfisol, C inputs from the pasture compensated for the C3-C losses. Analysis of organic and inorganic P fractions indicated Z. joazeiro and P. juliflora enriched the soil under their canopy with P, whereas S. tuberosa had no positive effect on fertility. A combination of ANOVA and spatial analysis and mapping was used to show vegetation effects.  相似文献   
124.
A model has been derived for the enrichment of heavy isotopes of water in leaves, including progressive enrichment along the leaf. In the model, lighter water is preferentially transpired leaving heavier water to diffuse back into the xylem and be carried further along the leaf. For this pattern to be pronounced, the ratio of advection to diffusion (Péclet number) has to be large in the longitudinal direction, and small in the radial direction. The progressive enrichment along the xylem is less than that occurring at the sites of evaporation in the mesophyll, depending on the isolation afforded by the radial Péclet number. There is an upper bound on enrichment, and effects of ground tissue associated with major veins are included. When transpiration rate is spatially nonuniform, averaging of enrichment occurs more naturally with transpiration weighting than with area-based weighting. This gives zero average enrichment of transpired water, the modified Craig-Gordon equation for average enrichment at the sites of evaporation and the Farquhar and Lloyd (In Stable Isotopes and Plant Carbon-Water Relations, pp. 47-70. Academic Press, New York, USA, 1993) prediction for mesophyll water. Earlier results on the isotopic composition of evolved oxygen and of retro-diffused carbon dioxide are preserved if these processes vary in parallel with transpiration rate. Parallel variation should be indicated approximately by uniform carbon isotope discrimination across the leaf.  相似文献   
125.
The chemical compositions of ground water and organic matter in sediments were investigated at a sandy shore of Tokyo Bay, Japan to determine the fate of ground water NO3 . On the basis of Cl distribution in ground water, the beach was classified into freshwater (FR)-, transition (TR)-, and seawater (SW)-zones from the land toward the shoreline. The NO3 and N2O did not behave conservatively with respect to Cl during subsurface mixing of freshwater and seawater, suggesting NO3 consumption and N2O production in the TR-zone. Absence of beach vegetation indicated that NO3 assimilation by higher plants was not as important as NO3 sink. Low NH4 + concentrations in ground water revealed little reduction of NO3 to NH4 +. These facts implied that microbial denitrification and assimilation were the likely sinks for ground water NO3 . The potential activity and number of denitrifiers in water-saturated sediment were highest in the low-chlorinity part of the TR-zone. The location of the highest potential denitrification activity (DN-zone) overlapped with that of the highest NO3 concentration. The C/N ratio and carbon isotope ratio (13C) of organic matter in sediment (< 100 -m) varied from 12.0 to 22.5 and from –22.5 to –25.5, respectively. The 13C value was inversely related to the C/N ratio (r 2 = 0.968, n = 11), which was explained by the mixing of organic matters of terrestrial and marine origins. In the DN-zone, the fine sediments were rich in organic matters with high C/N ratios and low 13C values, implying that dissolved organic matters of terrestrial origin might have been immobilized under slightly saline conditions. A concurrent supply of NO3 and organic matter to the TR-zone by ground water discharge probably generates favorable conditions for denitrifiers. Ground water NO3 discharged to the beach is thus partially denitrified and fixed as microbial biomass before it enters the sea. Further studies are necessary to determine the relative contribution of these processes for NO3 removal.  相似文献   
126.
Two irrigation systems were used to compare nitrogen uptake efficiency in citrus trees and to evaluate the NO3 runoff in «Navelina» orange trees [Citrus sinensis (L.) Osbeck] on Carrizo citrange rootstock (Citrus sinensis × Poncirus trifoliata Raf.). These were fertilized with 125 g N as labelled K15NO3 and grown outdoors in containers filled with a sand-loamy soil. Two groups of 3 trees received this N dose either in five equally split applications by a flooding irrigation system or in 66 applications by drip. Trees were harvested at the end of the vegetative cycle (December) and the isotopic ratios of 15N/14N were measured in the soil-plant system. The N uptake efficiency of the whole tree was higher with drip irrigation (75 percnt;) than with flooding system (64 percnt;). In the 0-90 cm soil profile, the N immobilized in the organic fraction was similar for both irrigation methods (around 13 percnt;), whereas the N retained as NO3 was 1 percnt; of the N applied under drip and 10 percnt; under flooding. In the last case, most of NO3 remained under root system and it could be lost to leaching either by heavy rainfalls or excessive water applications. These results showed that a drip irrigation system was more efficient for improving water use and N uptake from fertilizer, in addition to potentially reduced leaching losses.  相似文献   
127.
A widely applicable strategy is presented for efficient and rapid production of small water soluble peptides expressed as fusion proteins with the immunoglobulin-binding domain of streptococcal protein G. A simple extraction and purification scheme that includes a protease cleavage step to release the target peptide is described. The yield of authentic target peptide exceeds 10 mg per liter of culture. Production of U-13C, 15N and highly deuterated U-13C, 15N isotope labeled peptide is demonstrated for the 11 residue S2 peptide, corresponding to the C-terminus of the -subunit of transducin, and the coiled coil trimerization domain from cartilage matrix protein (CMPcc), respectively. Heteronuclear two-dimensional NMR spectra are used for initial peptide characterization.  相似文献   
128.
129.
Dehairs  F.  Rao  R. G.  Chandra Mohan  P.  Raman  A.V.  Marguillier  S.  Hellings  L. 《Hydrobiologia》2000,431(2-3):225-241
Stable carbon isotopic composition and C/N ratio were used to trace the input of carbon associated with mangrove litter into the estuary of the Godavari–Gautami delta system and Kakinada bay (Andhra Pradesh, India). Suspended organic matter in the mangrove channels was more depleted in 13C (average 13C = –24.5) than in Kakinada bay which showed 13C values for suspended matter (average 13C = –22.7) closer to those expected for marine phytoplankton. Suspended organic matter from mangrove channels was enriched in nitrogen (average C/N atom ratio 12.7) and 13C (average 13C = –24.5) relative to mangrove leaf litter, which had a C/N ratio of 75 and a 13C value of –28. Lowest C/N ratios for suspended matter were observed during southwest monsoon when rainfall was highest. Although in general, mangrove litter fall was also lower during this period, no clear correlation was observed between litter fall and C/N ratio of suspended matter. In general, the composition of suspended matter pointed towards phytoplankton as a major component. Isotopic composition of zooplankton suggested selective feeding on 13C-enriched, marine phytoplankton in open Kakinada bay and on 13C-depleted organic matter, such as estuarine phytoplankton and mangrove litter, in the mangrove channels. From the 13C signature, it appeared that mangrove carbon was present to some extent in zooplankton and macrofauna from the mangrove mudflats and channels, but the signal rapidly decreased in Kakinada bay. Nitrogen isotopic composition of zooplankton and macrofauna indicated a progressive enrichment of 15N away from the mangrove forest towards the northern part of Kakinada bay, in approach of Kakinada city. This is thought to reflect input of anthropogenic nitrogen enriched in 15N and subsequent uptake of this enriched nitrogen into the aquatic food chain.  相似文献   
130.
Zu-Hua Yin  John A. Raven 《Planta》1998,205(4):574-580
The impacts of various nitrogen sources, i.e. NO 3, NH4 + or NH4NO3 in combination with gaseous NH3, on nitrogen-, carbon- and water-use efficiency and 13C discrimination (δ13C) by plants of the C3 species Triticum aestivum L. (wheat) and the C4 species Zea mays L. (maize) were studied. Triticum aestivum and Z. mays were hydroponically grown with 2 mol · m−3 of N supplied as NO 3, NH4 + or NH4NO3 for 21 and 18 d, respectively, and thereafter exposed to gaseous NH3 at 320 μg · m−3 or to ambient air for 7 d. In T. aestivum and Z. mays over a 7-d growth period, nitrogen-use efficiency (NUE) values were influenced by N-sources in the decreasing order NH4NO3-N > NO 3-N > NH4 +-N and NO 3-N > NH4NO3-N > NH4 +-N, respectively. Fumigation with NH3 decreased the NUE values of plants grown with any of the N-forms. During 28- and 7-d growth periods, N-sources affected water-use efficiency (WUE) values in the decreasing order of NH4 +-N > NO 3-N≈NH4NO3-N in non-fumigated T. aestivum, while fumigation with NH3 increased the WUE of NO 3-grown plants. There were insignificant effects of N-sources on WUE values of Z. mays over 25- and 7-d growth periods. Furthermore, δ13C values in plant tissues (leaves, stubble and roots) were higher (less negative) in NH4 +-grown plants of T. aestivum and Z. mays than in those supplied with NH4NO3 or NO 3. Regardless of the N-form supplied to the roots of the plant species, exposure to NH3 caused more-positive δ13C values in the plant tissues. These results indicate that the variations in N-source were associated with small but significant variations in δ13C values in plants of T. aestivum and Z. mays. These differences in δ13C values are in the direction expected from differences in WUE values over long or short growth periods and with differences in the extent of non-Rubisco (ribulose-1,5-bisphosphate carboxylase-oxygenase, EC 4.1.1.39) carboxylate contribution to net C acquisition, as a function of N-source. Received: 12 September 1997 / Accepted: 13 January 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号