首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   14篇
  国内免费   8篇
  2023年   1篇
  2021年   1篇
  2020年   7篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   8篇
  2015年   6篇
  2014年   2篇
  2013年   6篇
  2012年   10篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   11篇
  2004年   15篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1993年   5篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
61.
Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species.  相似文献   
62.
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area‐based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications.  相似文献   
63.
Isoprene is emitted by a significant fraction of the world''s vegetation. Isoprene makes leaves more thermotolerant, yet we do not fully understand how. We have recently shown that isoprene stabilizes thylakoid membranes under heat stress. Here we show that heat-stressed, isoprene-emitting transgenic Arabidopsis plants also produce a lower pool of reactive oxygen and reactive nitrogen species, and that this was especially due to a lower accumulation of H2O2 in isoprene emitting plants. It remains difficult to disentangle whether in heat stressed plants isoprene also directly reacts with and quenches reactive oxygen species (ROS), or reduces ROS formation by stabilizing thylakoids. We present considerations that make the latter a more likely mechanism, under our experimental circumstances.       相似文献   
64.
Isoprene is emitted from many terrestrial plants at high rates, accounting for an estimated 1/3 of annual global volatile organic compound emissions from all anthropogenic and biogenic sources combined. Through rapid photooxidation reactions in the atmosphere, isoprene is converted to a variety of oxidized hydrocarbons, providing higher order reactants for the production of organic nitrates and tropospheric ozone, reducing the availability of oxidants for the breakdown of radiatively active trace gases such as methane, and potentially producing hygroscopic particles that act as effective cloud condensation nuclei. However, the functional basis for plant production of isoprene remains elusive. It has been hypothesized that in the cell isoprene mitigates oxidative damage during the stress‐induced accumulation of reactive oxygen species (ROS), but the products of isoprene‐ROS reactions in plants have not been detected. Using pyruvate‐2‐13C leaf and branch feeding and individual branch and whole mesocosm flux studies, we present evidence that isoprene (i) is oxidized to methyl vinyl ketone and methacrolein (iox) in leaves and that iox/i emission ratios increase with temperature, possibly due to an increase in ROS production under high temperature and light stress. In a primary rainforest in Amazonia, we inferred significant in plant isoprene oxidation (despite the strong masking effect of simultaneous atmospheric oxidation), from its influence on the vertical distribution of iox uptake fluxes, which were shifted to low isoprene emitting regions of the canopy. These observations suggest that carbon investment in isoprene production is larger than that inferred from emissions alone and that models of tropospheric chemistry and biota–chemistry–climate interactions should incorporate isoprene oxidation within both the biosphere and the atmosphere with potential implications for better understanding both the oxidizing power of the troposphere and forest response to climate change.  相似文献   
65.
Gomez F  Saiki R  Chin R  Srinivasan C  Clarke CF 《Gene》2012,506(1):106-116
Coenzyme Q (ubiquinone or Q) is an essential lipid component of the mitochondrial electron transport chain. In Caenorhabditis elegans Q biosynthesis involves at least nine steps, including the hydroxylation of the hydroquinone ring by CLK-1 and two O-methylation steps mediated by COQ-3. We characterize two C. elegans coq-3 deletion mutants, and show that while each has defects in Q synthesis, their phenotypes are distinct. First generation homozygous coq-3(ok506) mutants are fertile when fed the standard lab diet of Q-replete OP50 Escherichia coli, but their second generation homozygous progeny does not reproduce. In contrast, the coq-3(qm188) deletion mutant remains sterile when fed Q-replete OP50. Quantitative PCR analyses suggest that the longer qm188 deletion may alter expression of the flanking nuo-3 and gdi-1 genes, located 5' and 3', respectively of coq-3 within an operon. We surmise that variable expression of nuo-3, a subunit of complex I, or of gdi-1, a guanine nucleotide dissociation inhibitor, may act in combination with defects in Q biosynthesis to produce a more severe phenotype. The phenotypes of both coq-3 mutants are more drastic as compared to the C. elegans clk-1 mutants. When fed OP50, clk-1 mutants reproduce for many generations, but show reduced fertility, slow behaviors, and enhanced life span. The coq-3 and clk-1 mutants all show arrested development and are sterile when fed the Q-deficient E. coli strain GD1 (harboring a mutation in the ubiG gene). However, unlike clk-1 mutant worms, neither coq-3 mutant strain responded to dietary supplementation with purified exogenous Q(10). Here we show that the Q(9) content can be determined in lipid extracts from just 200 individual worms, enabling the determination of Q content in the coq-3 mutants unable to reproduce. An extra-chromosomal array expressing wild-type C. elegans coq-3 rescued fertility of both coq-3 mutants and partially restored steady-state levels of COQ-3 polypeptide and Q(9) content, indicating that primary defect in both is limited to coq-3. The limited response of the coq-3 mutants to dietary supplementation with Q provides a powerful model to probe the effectiveness of exogenous Q supplementation as compared to restoration of de novo Q biosynthesis.  相似文献   
66.
Isoprene is the most abundant volatile hydrocarbon emitted by many tree species and has a major impact on tropospheric chemistry, leading to formation of pollutants and enhancing the lifetime of methane, a powerful greenhouse gas. Reliable estimates of global isoprene emission from different ecosystems demand a clear understanding of the processes of both production and consumption. Although the biochemistry of isoprene production has been studied extensively and environmental controls over its emission are relatively well known, the study of isoprene consumption in soil has been largely neglected. Here, we present results on the production and consumption of isoprene studied by measuring the following different components: (1) leaf and soil and (2) at the whole ecosystem level in two distinct enclosed ultraviolet light‐depleted mesocosms at the Biosphere 2 facility: a cottonwood plantation with trees grown at ambient and elevated atmospheric CO2 concentrations and a tropical rainforest, under well watered and drought conditions. Consumption of isoprene by soil was observed in both systems. The isoprene sink capacity of litter‐free soil of the agriforest stands showed no significant response to different CO2 treatments, while isoprene production was strongly depressed by elevated atmospheric CO2 concentrations. In both mesocosms, drought suppressed the sink capacity, but the full sink capacity of dry soil was recovered within a few hours upon rewetting. We conclude that soil uptake of atmospheric isoprene is likely to be modest but significant and needs to be taken into account for a comprehensive estimate of the global isoprene budget. More studies investigating the capacity of soils to uptake isoprene in natural conditions are clearly needed.  相似文献   
67.
Aquatic plants are generally used for wastewater purification and phytoremediation, but some of them also emit large amounts of isoprene, the most abundant biogenic volatile organic compound. Since isoprenoid biosynthesis requires high amounts of phosphorylated intermediates, the emission may also be controlled by inorganic phosphorus concentration (Pi) in leaves. We carried out experiments to determine the emission of isoprene from Phragmites australis plants used in reconstructed wetlands to phytoremediate elevated levels of phosphorus contributed by urban wastes. Four groups of plants were grown hydroponically in water containing different levels of KH(2)PO(4). High levels of phosphorus in the water resulted in high Pi in the leaves. High Pi stimulated photosynthesis at intercellular CO(2) concentrations lower and higher than ambient, implying higher ribulose 1,5-bisphosphate carboxylase (Rubisco) activity and higher ribulose 1,5-bisphosphate regeneration rates, respectively. However, isoprene emission was substantially lower at high Pi than at low Pi, and was not associated to photosynthesis rates at high Pi. This surprising result suggests that isoprene is limited by processes other than photosynthetic intermediate availability or by energetic (ATP) requirements under high Pi levels. Irrespective of the mechanism responsible for the observed reduction of isoprene emission, our results show that Phragmites plants may effectively remove phosphorus from water without concurrently increase isoprene emission, at least on a leaf area basis. Thus, Phragmites used in reconstructed wetlands for phytoremediation of urban wastes rich of phosphates will not contribute high loads of hydrocarbons which may influence air quality over urban and peri-urban areas.  相似文献   
68.
The effects of global change on the emission rates of isoprene from plants are not clear. A factor that can influence the response of isoprene emission to elevated CO2 concentrations is the availability of nutrients. Isoprene emission rate under standard conditions (leaf temperature: 30°C, photosynthetically active radiation (PAR): 1000 μmol photons m?2 s?1), photosynthesis, photosynthetic capacity, and leaf nitrogen (N) content were measured in Quercus robur grown in well‐ventilated greenhouses at ambient and elevated CO2 (ambient plus 300 ppm) and two different soil fertilities. The results show that elevated CO2 enhanced photosynthesis but leaf respiration rates were not affected by either the CO2 or nutrient treatments. Isoprene emission rates and photosynthetic capacity were found to decrease with elevated CO2, but an increase in nutrient availability had the converse effect. Leaf N content was significantly greater with increased nutrient availability, but unaffected by CO2. Isoprene emission rates measured under these conditions were strongly correlated with photosynthetic capacity across the range of different treatments. This suggests that the effects of CO2 and nutrient levels on allocation of carbon to isoprene production and emission under near‐saturating light largely depend on the effects on photosynthetic electron transport capacity.  相似文献   
69.
As part of the Large Scale Biosphere–Atmosphere Experiment in Amazônia (LBA), we have developed a bottom‐up approach for estimating canopy‐scale fluxes of isoprene. Estimating isoprene fluxes for a given forest ecosystem requires knowledge of foliar biomass, segregated by species, and the isoprene emission characteristics of the individual tree species comprising the forest. In this study, approximately 38% of 125 tree species examined at six sites in the Brazilian Amazon emitted isoprene. Given logistical difficulties and extremely high species diversity, it was possible to screen only a small percentage of tree species, and we propose a protocol for estimating the emission capacity of unmeasured taxa using a taxonomic approach, in which we assign to an unmeasured genus a value based on the percentage of genera within its plant family which have been shown to emit isoprene. Combining this information with data obtained from 14 tree censuses at four Neotropical forest sites, we have estimated the percentage of isoprene‐emitting biomass at each site. The relative contribution of each genus of tree is estimated as the basal area of all trees of that genus divided by the total basal area of the plot. Using this technique, the percentage of isoprene‐emitting biomass varied from 20% to 42% (mean=31%; SD=8%). Responses of isoprene emission to varying light and temperature, measured on a sun‐adapted leaf of mango (Mangifera indica L.), suggest that existing algorithms developed for temperate species are adequate for tropical species as well. Incorporating these algorithms, estimates of isoprene‐emitting biomass, isoprene emission capacity, and site foliar biomass into a canopy flux model, canopy‐scale fluxes of isoprene were predicted and compared with the above‐canopy fluxes measured at two sites. Our bottom‐up approach overestimates fluxes by about 50%, but variations in measured fluxes between the two sites are largely explained by observed variation in the amount of isoprene‐emitting biomass.  相似文献   
70.
Isoprene emission has been documented and characterized from species in all major groups of vascular plants. We report in our survey that isoprene emission is much more common in mosses and ferns than later divergent land plants but is absent in liverworts and hornworts. The light and temperature responses of isoprene emission from Sphagnum capillifolium (Ehrh.) Hedw. are similar to those of other land plants. Isoprene increases thermotolerance of S. capillifolium to the same extent seen in higher plants as measured by chlorophyll fluorescence. Sphagnum species in a northern Wisconsin bog experienced large temperature fluctuations similar to those reported in tree canopies. Since isoprene has been shown to help plants cope with large, rapid temperature fluctuations, we hypothesize the thermal and correlated dessication stress experienced by early land plants provided the selective pressure for the evolution of light-dependent isoprene emission in the ancestors of modern mosses. As plants radiated into different habitats, this capacity was lost multiple times in favor of other thermal protective mechanisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号