首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   14篇
  国内免费   8篇
  150篇
  2023年   1篇
  2021年   1篇
  2020年   7篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   8篇
  2015年   6篇
  2014年   2篇
  2013年   6篇
  2012年   10篇
  2011年   6篇
  2010年   2篇
  2009年   5篇
  2008年   8篇
  2007年   3篇
  2006年   5篇
  2005年   11篇
  2004年   15篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1993年   5篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1981年   1篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有150条查询结果,搜索用时 15 毫秒
31.
《Free radical research》2013,47(6):323-327
Breath analysis is a non-invasive method for investigation of the volatile compounds produced by humans. Pentane has often been taken as an indicator of lipid peroxidation. Our purpose in this study was to determine its normal concentration in the breath of healthy humans. Using a specific and sensitive gas chromatography-mass spectrometry technique pentane concentrations in breath were lower than 10 pmoles/1. The high levels of pentane found by some authors in healthy humans were probably due to the coelution of pentane with isoprene, a volatile hydrocarbon present in human breath.  相似文献   
32.
33.
34.
Isoprene is the most abundant volatile hydrocarbon emitted by many tree species and has a major impact on tropospheric chemistry, leading to formation of pollutants and enhancing the lifetime of methane, a powerful greenhouse gas. Reliable estimates of global isoprene emission from different ecosystems demand a clear understanding of the processes of both production and consumption. Although the biochemistry of isoprene production has been studied extensively and environmental controls over its emission are relatively well known, the study of isoprene consumption in soil has been largely neglected. Here, we present results on the production and consumption of isoprene studied by measuring the following different components: (1) leaf and soil and (2) at the whole ecosystem level in two distinct enclosed ultraviolet light‐depleted mesocosms at the Biosphere 2 facility: a cottonwood plantation with trees grown at ambient and elevated atmospheric CO2 concentrations and a tropical rainforest, under well watered and drought conditions. Consumption of isoprene by soil was observed in both systems. The isoprene sink capacity of litter‐free soil of the agriforest stands showed no significant response to different CO2 treatments, while isoprene production was strongly depressed by elevated atmospheric CO2 concentrations. In both mesocosms, drought suppressed the sink capacity, but the full sink capacity of dry soil was recovered within a few hours upon rewetting. We conclude that soil uptake of atmospheric isoprene is likely to be modest but significant and needs to be taken into account for a comprehensive estimate of the global isoprene budget. More studies investigating the capacity of soils to uptake isoprene in natural conditions are clearly needed.  相似文献   
35.
In the early times of isoprenoid research, a single pathway was found for the formation of the C5 monomer, isopentenyl diphosphate (IPP), and this acetate/mevalonate pathway was supposed to occur ubiquitously in all living organisms. Now, 40 years later, a totally different IPP biosynthesis route has been detected in eubacteria, green algae and higher plants. In this new pathway glyceraldehyde 3-phosphate (GAP) and pyruvate are precursors of isopentenyl diphosphate, but not acetyl-CoA and mevalonic acid. In green tissues of three higher plants it was shown that all chloroplastbound isoprenoids (β-carotene, phytyl chains of chlorophylls and nona-prenyl chain of plastoquinone-9) are formed via the GAP/pyruvate pathway, whereas the cytoplasmic sterols are formed via the acetate/mevalonate pathway. Also, isoprene, emitted by various plants at high light conditions by action of the plastid-bound isoprene synthase, is formed via the new GAP/pyruvate pathway. Thus, in higher plants, there exist two separate and biochemically different IPP biosynthesis pathways: (1) the novel alternative GAP/pyruvate pathway apparently bound to the plastidic compartment and (2) the classical cytoplasmic acetate/mevalonate pathway. This new GAP/pyruvate pathway for IPP formation allows a reasonable interpretation of previous odd results concerning the biosynthesis of chloroplast isoprenoids, which, so far, had mainly been interpreted assuming compartmentation differences. The novel GAP/pyruvate pathway for IPP formation in plastids appears as a heritage of their prokaryotic, endosymbiotic ancestors.  相似文献   
36.
Abstract

A well-defined relationship has to exist between substance concentrations in blood and in breath if blood-borne volatile organic compounds (VOCs) are to be used as breath markers of disease or health. In this study, the impact of inspired substances on this relationship was investigated systematically. VOCs were determined in inspired and expired air and in arterial and mixed venous blood of 46 mechanically ventilated patients by means of SPME, GC/MS. Mean inspired concentrations were 25% of expired concentrations for pentane, 7.5% for acetone, 0.7% for isoprene and 0.4% for isoflurane. Only if inspired concentrations were <5% did substance disappearance rates from blood and exhalation rates correlate well. Exhaled substance concentrations depended on venous and inspired concentrations. Patients with sepsis had higher n-pentane and lower acetone concentrations in mixed venous blood than patients without sepsis (2.27 (0.37–8.70) versus 0.65 (0.33–1.48) nmol L?1 and 69 (22–99) versus 18 (6.7–56) µmol L?1). n-Pentane and acetone concentrations in breath showed no differences between the patient groups, regardless whether or not expired concentrations were corrected for inspired concentrations. In mechanically ventilated patients, concentration profiles of volatile substances in breath may considerably deviate from profiles in blood depending on the relative amount of inspired concentrations. A simple correction for inspired substance concentrations was not possible. Hence, substances having inspired concentrations >5% of expired concentrations should not be used as breath markers in these patients without knowledge of concentrations in blood and breath.  相似文献   
37.
38.
The X-ray crystal structure of recombinant PcISPS (isoprene synthase from gray poplar hybrid Populus × canescens) has been determined at 2.7 Å resolution, and the structure of its complex with three Mg2+ and the unreactive substrate analogue dimethylallyl-S-thiolodiphosphate has been determined at 2.8 Å resolution. Analysis of these structures suggests that the generation of isoprene from substrate dimethylallyl diphosphate occurs via a syn-periplanar elimination mechanism in which the diphosphate-leaving group serves as a general base. This chemical mechanism is responsible for the annual atmospheric emission of 100 Tg of isoprene by terrestrial plant life. Importantly, the PcISPS structure promises to guide future protein engineering studies, potentially leading to hydrocarbon fuels and products that do not rely on traditional petrochemical sources.  相似文献   
39.
40.
Six new bibenzyls have been isolated from the liverwort, Radula variabilis and their structures have been established by chemical and spectral evidence. In addition, a new dihydrochalcone and a new bibenzy] have been isolated as their methyl ethers. Except for two of the bibenzyls, the present compounds have a unique seven-membered heterocyclic ring and they are the first members of a new group of natural product.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号