首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2445篇
  免费   160篇
  国内免费   149篇
  2754篇
  2024年   5篇
  2023年   28篇
  2022年   42篇
  2021年   41篇
  2020年   61篇
  2019年   116篇
  2018年   116篇
  2017年   79篇
  2016年   84篇
  2015年   87篇
  2014年   173篇
  2013年   227篇
  2012年   74篇
  2011年   113篇
  2010年   125篇
  2009年   180篇
  2008年   177篇
  2007年   149篇
  2006年   121篇
  2005年   109篇
  2004年   92篇
  2003年   90篇
  2002年   81篇
  2001年   28篇
  2000年   23篇
  1999年   36篇
  1998年   28篇
  1997年   30篇
  1996年   25篇
  1995年   23篇
  1994年   19篇
  1993年   21篇
  1992年   16篇
  1991年   13篇
  1990年   8篇
  1989年   9篇
  1988年   7篇
  1987年   12篇
  1986年   7篇
  1985年   9篇
  1984年   12篇
  1983年   8篇
  1982年   13篇
  1981年   8篇
  1980年   10篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1975年   1篇
  1973年   1篇
排序方式: 共有2754条查询结果,搜索用时 20 毫秒
961.
The dynamic properties of instrumented treadmills influence the force measurement of the embedded force platform. We investigated these properties using a frequency response function, which evaluates the ratio between the measured and applied forces in the frequency domain. For comparison, the procedure was also performed on the gold-standard ground-embedded force platform. A predictive model of the systematic error of both types of force platform was then developed and tested against different input signals that represent three types of running patterns. Results show that the treadmill structure distorts the measured force signal. We then modified this structure with a simple stiffening frame in an attempt to reduce measurement error. Consequently, the overall absolute error was reduced (−22%), and the error in force-derived metrics was also sufficiently reduced: −68% for average loading rate error and −80% for impact peak error. Our procedure shows how to measure, predict, and reduce systematic dynamic error associated with treadmill-installed force platforms. We suggest this procedure should be implemented to appraise data quality, and frequency response function values should be included in research reports.  相似文献   
962.
963.
Neurotransmitter:sodium symporters (NSSs) terminate neurotransmission by Na+-dependent reuptake of released neurotransmitters. Previous studies suggested that Na+-binding reconfigures dynamically coupled structural elements in an allosteric interaction network (AIN) responsible for function-related conformational changes, but the intramolecular pathway of this mechanism has remained uncharted. We describe a new approach for the modeling and analysis of intramolecular dynamics in the bacterial NSS homolog LeuT. From microsecond-scale molecular dynamics simulations and cognate experimental verifications in both LeuT and human dopamine transporter (hDAT), we apply the novel method to identify the composition and the dynamic properties of their conserved AIN. In LeuT, two different perturbations disrupting Na+ binding and transport (i.e. replacing Na+ with Li+ or the Y268A mutation at the intracellular gate) affect the AIN in strikingly similar ways. In contrast, other mutations that affect the intracellular gate (i.e. R5A and D369A) do not significantly impair Na+ cooperativity and transport. Our analysis shows these perturbations to have much lesser effects on the AIN, underscoring the sensitivity of this novel method to the mechanistic nature of the perturbation. Notably, this set of observations holds as well for hDAT, where the aligned Y335A, R60A, and D436A mutations also produce different impacts on Na+ dependence. Thus, the detailed AIN generated from our method is shown to connect Na+ binding with global conformational changes that are critical for the transport mechanism. That the AIN between the Na+ binding sites and the intracellular gate in bacterial LeuT resembles that in eukaryotic hDAT highlights the conservation of allosteric pathways underlying NSS function.  相似文献   
964.
Individuals with anterior cruciate ligament reconstruction (ACLR) often exhibit a “stiffened knee strategy” or an excessively extended knee during gait, characterized by lesser knee flexion excursion and peak internal knee extension moment (KEM). The purpose of this study was to determine the effect of real-time biofeedback (RTBF) cuing an acute change in peak vertical ground reaction force (vGRF) during the first 50% of the stance phase of walking gait on: (1) root mean square error (RMSE) between actual vGRF and RTBF target vGRF; (2) perceived difficulty; and (3) knee biomechanics. Acquisition and short-term recall of these outcomes were evaluated. Thirty individuals with unilateral ACLR completed 4 separate walking sessions on a force-measuring treadmill that consisted of a control (no RTBF) and 3 experimental loading conditions using RTBF including: (1) 5% vGRF increase (high-loading), (2) 5% vGRF decrease (low-loading) and (3) symmetric vGRF between limbs. Bilateral biomechanical outcomes were analyzed during the first 50% of the stance phase, and included KEM, knee flexion excursion, peak vGRF, and instantaneous vGRF loading rate (vGRF-LR) for each loading condition. Peak vGRF significantly increased and decreased during high-loading and low-loading, respectively compared to control loading. Instantaneous vGRF-LR, peak KEM and knee flexion excursion significantly increased during the high-loading condition compared to low-loading. Perceived difficultly and RMSE were lower during the symmetrical loading condition compared to the low-loading condition. Cuing an increase in peak vGRF may be beneficial for increasing KEM, knee flexion excursion, peak vGRF, and vGRF-LR in individuals with ACLR. Clinical Trials Number: NCT03035994.  相似文献   
965.
Aggregation of suspended yeast cells in a small-scale ultrasonic standing wave field has been monitored and quantified. The aggregation effect is based on the acoustic radiation force, which concentrates the cells in clumps. The ultrasonic chamber employed (1.9 MHz, one wavelength pathlength) had a sonication volume of 60 l. The aggregation process was observed from above the transducer through a transparent glass reflector. A distinct, reproducible, pattern of clumps formed rapidly in the sound field. The sound pressure was estimated experimentally to be of the order of 1 MPa. Microscopic observations of the formation of a single clump were recorded onto a PC. The time dependent movement patterns and travelling velocities of the cells during the aggregation process were extracted by particle image velocimetry analysis. A time dependent change was seen in the particle motion pattern during approach to its completion of clump formation after 45 s. Streaming eddies were set-up during the first couple of seconds. The scale of the eddies was consistent with Rayleigh micro-streaming theory. An increase in the travelling velocity of the cells was observed after 30 s from initially about 400 m s–1 to about 1 mm s–1. The influence of a number of mechanisms on particle behaviour (e.g. micro-streaming, particle interactions and convective flow) is considered. The experimental set-up introduced here is a powerful tool for aggregation studies in ultrasonic standing waves and lays the foundation for future quantitative experiments on the individual contributions of the different mechanisms.  相似文献   
966.
A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as was once believed. Direct data are required in order to understand the dynamics of nucleosomes more clearly and to answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP-dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large-scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed, allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics.  相似文献   
967.
968.
鸟类的咬合力受食性、种内竞争和捕食压力等多种生态因素的影响,可作为其生态适应特征的重要指标。但目前关于鸟类的咬合力及其影响因素却鲜有研究,为此,我们使用咬合力传感器,对同属的两个近缘鸟种,麻雀(Passer montanus)和山麻雀(P.cinnamomeus)的咬合力进行了比较研究。结果表明,山麻雀(n=12)的咬合力显著大于麻雀(n=59)(t=3.754,P0.01),但山麻雀(t=0.449,P0.05)和麻雀(Z=﹣1.198,P0.05)的雌雄个体间咬合力均无差异,同时,山麻雀的头宽(t=﹣3.713,P0.01)、头高(t=﹣5.405,P0.01)和喙宽(t=﹣6.201,P0.01)均显著大于麻雀。尽管个体的咬合力与其身体各参数指标无显著相关性,但在种间,头和喙的大小可能是影响两者咬合力的重要因素,由于两者的一些生态适应特征可通过头大小和喙型体现,推测两者生境和食性的差异可能是影响其咬合力大小的主要原因。  相似文献   
969.
970.
女贞和珊瑚树叶片表面特征的AFM观察   总被引:4,自引:0,他引:4  
石辉  王会霞  李秧秧  刘肖 《生态学报》2011,31(5):1471-1477
应用原子力显微镜观察了女贞(Ligustrum lucidum)、珊瑚树(Viburnum odoratissimum)幼叶和成熟叶的表面特征,并探讨了叶面微结构对滞尘能力的可能影响以及抵抗干旱、污染物等胁迫的能力。女贞幼叶和成熟叶正背面的粗糙度Ra分别为417.8、794.5,1069、957.4 nm;珊瑚树幼叶和成熟叶正背面的粗糙度Ra分别为471.3、469.6,291.1、865.9 nm。和幼叶相比,成熟叶表面的粗糙度发生变化,但2个物种的变化趋势不同,这种变化可能与气孔的发育以及外界环境条件对叶片表面形态结构、蜡质含量和成分的影响不同有关。叶片表面存在大量的沟状、孔状峰谷区域和直径约为10 μm的凹陷,有利于PM10的滞留。女贞和珊瑚树成熟叶气孔只分布在叶下表皮且下陷。这些特征均说明女贞和珊瑚树具有较强的滞尘能力和抵抗干旱、污染物胁迫的能力,作为绿篱植物对消减城市大气颗粒物污染和提高空气质量具有重要的意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号