首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   32篇
  国内免费   9篇
  2023年   9篇
  2022年   20篇
  2021年   16篇
  2020年   19篇
  2019年   24篇
  2018年   23篇
  2017年   13篇
  2016年   11篇
  2015年   18篇
  2014年   41篇
  2013年   52篇
  2012年   19篇
  2011年   32篇
  2010年   25篇
  2009年   23篇
  2008年   35篇
  2007年   28篇
  2006年   26篇
  2005年   27篇
  2004年   40篇
  2003年   20篇
  2002年   23篇
  2001年   11篇
  2000年   22篇
  1999年   18篇
  1998年   24篇
  1997年   12篇
  1996年   18篇
  1995年   10篇
  1994年   10篇
  1993年   22篇
  1992年   13篇
  1991年   9篇
  1990年   5篇
  1989年   11篇
  1988年   9篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   6篇
  1982年   9篇
  1981年   7篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有791条查询结果,搜索用时 250 毫秒
31.
Hamstring muscle function during knee flexion has been linked to hamstring injury and performance. However, it is unclear whether knee flexion alone (KF) requires similar hamstring electromyography (EMG) activity pattern to simultaneous hip extension and knee flexion (HE-KF), a combination that occurs in the late swing phase of sprinting. This study examined whether HE-KF maximal voluntary isometric contraction (MVIC) evokes higher (EMG) activity in biceps femoris long head (BFlh) and semitendinosus (ST) than KF alone. Effects of shank rotation angles were also tested. Twenty-one males performed the above-mentioned MVICs while EMG activity was measured along ST and BFlh. Conditions were compared using a one-way mixed functional ANOVA model under a fully Bayesian framework. Higher EMG activity was found in HE-KF in all shank rotation positions than in KF in the middle region of BFlh (highest in the 9th channel, by 0.022 mV [95%CrI 0.014 to 0.030] in neutral shank position). For ST, this was only observed in the neutral shank position and in the most proximal channel (by 0.013 mV [95%CrI 0.001 to 0.025]). We observed muscle- and region-specific responses to HE-KF. Future studies should examine whether hamstring activation in this task is related to injury risk and sprint performance.  相似文献   
32.
The Nordic Hamstring Exercise (NHE) has been introduced as a training tool to improve the efficiency of eccentric hamstring muscle contraction. The aim of this study was to perform a biomechanical analysis of the NHE. Eighteen participants (20.4 ± 1.9 years) performed two sets of five repetitions each of the NHE and maximal eccentric voluntary contraction (MEVC) of the knee flexors on an isokinetic dynamometer whilst knee angular displacement and electrical activity (EMG) of biceps femoris were measured. EMG was on average higher during the NHE (134.3% of the MEVC). During the forward fall of the NHE, the angle at which a sharp increase in downward velocity occurred varied between 47.9 and 80.5 deg, while the peak knee angular velocity (pVelocity) varied between 47.7 and 132.8 deg s?1. A significant negative correlation was found between pVelocity and peak EMG (r = ?0.62, p < 0.01) and EMG at 45 deg (r = ?0.75, p < 0.01) expressed as a percentage of peak MEVC EMG. Some of the variables analyzed exhibited good to excellent levels of intra- and inter-session reliability. This type of analysis could be used to indirectly monitor the level of eccentric strength of the hamstring muscles while performing the NHE and potentially any training- or injury-related changes.  相似文献   
33.
Conventional bipolar EMG provides imprecise muscle activation estimates due to possibly heterogeneous activity within muscles and due to improper alignment of the electrodes with the muscle fibers. Principal component analysis (PCA), applied on multi-channel monopolar EMG yielded substantial improvements in muscle activation estimates in pennate muscles. We investigated the degree of heterogeneity in muscle activity and the contribution of PCA to muscle activation estimates in biceps brachii (BB), which has a relatively simply parallel-fibered architecture. EMG-based muscle activation estimates were assessed by comparison to elbow flexion forces in isometric, two-state isotonic contractions in eleven healthy male subjects. Monopolar EMG was collected over the entire surface of the BB with about 63 electrodes. Estimation quality of different combinations of EMG channels showed that heterogeneous activation was found mainly in medio-lateral direction, whereas adding channels in the longitudinal direction added largely redundant information. Multi-channel bipolar EMG amplitude improved muscle activation estimates by 5–14% as compared to a single bipolar. PCA-processed monopolar EMG amplitude yielded a further improvement of (12–22%). Thus multi-channel EMG, processed with PCA, substantially improves the quality of muscle activation estimates compared conventional bipolar EMG in BB.  相似文献   
34.
The aim of this study was to evaluate a surface electromyography (sEMG) signal and force model for the biceps brachii muscle during isotonic isometric contractions for an experimental set-up as well as for a simulation. The proposed model includes a new rate coding scheme and a new analytical formulation of the muscle force generation. The proposed rate coding scheme supposes varying minimum and peak firing frequencies according to motor unit (MU) type (I or II). Practically, the proposed analytical mechanogram allows us to tune the force contribution of each active MU according to its type and instantaneous firing rate. A subsequent sensitivity analysis using a Monte Carlo simulation allows deducing optimised input parameter ranges that guarantee a realistic behaviour of the proposed model according to two existing criteria and an additional one. In fact, this proposed new criterion evaluates the force generation efficiency according to neural intent. Experiments and simulations, at varying force levels and using the optimised parameter ranges, were performed to evaluate the proposed model. As a result, our study showed that the proposed sEMG–force modelling can emulate the biceps brachii behaviour during isotonic isometric contractions.  相似文献   
35.
We are interested in studying the genesis of a very common pathology: the human inguinal hernia. How the human inguinal hernia appears is not definitively clear, but it is accepted that it is caused by a combination of mechanical and biochemical alterations, and that muscular simulation plays an important role in this. This study proposes a model to explain how some physical parameters affect the ability to simulate the region dynamically and how these parameters are involved in generating inguinal hernias. We are particularly interested in understanding the mechanical alterations in the inguinal region because little is known about them or how they behave dynamically. Our model corroborates the most important theories regarding the generation of inguinal hernias and is an initial approach to numerically evaluating this affection.  相似文献   
36.
37.
Estrogen plays a cardioprotective role in female rat hearts subjected to ischemia/reperfusion injury. The its effects are, at least partially, associated with decreased cardiomyocyte contraction and increased expression of β2-adrenoceptor (β2-AR). We tested whether β2-AR could be involved in cardioprotection against ischemic damage and whether the roles of β2-AR were dependent on estrogenic environment. We first determined the effects of hypoxia/reoxygenation (H/R) on cardiomyocyte shortening in female rats. We then determined the roles of β2-AR in cardiomyocyte shortening, lactate dehydrogenase (LDH) release in culture medium, and cell death during hypoxia in isolated myocytes from female rats. We further determined the effects of estrogen on the roles of β2-AR during hypoxia. H/R induced short-term hibernation and stunning at the level of ventricular myocytes from normal female rats. Inhibition of β2-AR with ICI118,551 significantly elevated adrenergic contractile reserve, myocardial injury, and cell death in normal female rats during hypoxia, whereas ovariectomy (OVX) prominently enhanced myocyte contraction, myocardial injury, and cell death, and deprived the alternations in normal female rats. These changes were restored to normal by estrogen replacement (OVX+E2). These data suggest that β2-AR may be involved in the cardioprotection against ischemic damage, and the cardioprotection may depend on estrogenic environment.  相似文献   
38.
39.
As exceptionally calcium selective store-operated channels, Orai channels play a prominent role in cellular calcium signaling. While most studied in the immune system, we are beginning to recognize that Orai1 provides unique calcium signaling pathways in numerous tissue contexts. To assess the involvement of Orai1 in cardiac hypertrophy we used transverse aortic constriction to model pressure overload cardiac hypertrophy and heart failure in Orai1 deficient mice. We demonstrate that Orai1 deficient mice have significantly decreased survival in this pressure overload model. Transthoracic echocardiography reveals that Orai1 deficient mice develop rapid dilated cardiomyopathy, with greater loss of function, and histological and molecular data indicate that this pathology is associated with significant apoptosis, but not major differences in cellular hypertrophy, fibrosis, and some major hypertrophic makers. Orai1 represents a crucial calcium entry mechanism in the compensation of the heart to pressure overload over-load, and the development of dilated cardiomyopathy.  相似文献   
40.
Zebrafish larvae provide models of muscle development, muscle disease and muscle-related chemical toxicity, but related studies often lack functional measures of muscle health. In this video article, we demonstrate a method to measure force generation during contraction of zebrafish larval trunk muscle. Force measurements are accomplished by placing an anesthetized larva into a chamber filled with a salt solution. The anterior end of the larva is tied to a force transducer and the posterior end of the larva is tied to a length controller. An isometric twitch contraction is elicited by electric field stimulation and the force response is recorded for analysis. Force generation during contraction provides a measure of overall muscle health and specifically provides a measure of muscle function. Although we describe this technique for use with wild-type larvae, this method can be used with genetically modified larvae or with larvae treated with drugs or toxicants, to characterize muscle disease models and evaluate treatments, or to study muscle development, injury, or chemical toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号