首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1831篇
  免费   167篇
  国内免费   30篇
  2024年   3篇
  2023年   15篇
  2022年   24篇
  2021年   39篇
  2020年   52篇
  2019年   93篇
  2018年   59篇
  2017年   43篇
  2016年   52篇
  2015年   54篇
  2014年   106篇
  2013年   129篇
  2012年   72篇
  2011年   98篇
  2010年   63篇
  2009年   82篇
  2008年   72篇
  2007年   104篇
  2006年   89篇
  2005年   73篇
  2004年   79篇
  2003年   85篇
  2002年   54篇
  2001年   55篇
  2000年   52篇
  1999年   47篇
  1998年   45篇
  1997年   31篇
  1996年   33篇
  1995年   35篇
  1994年   24篇
  1993年   28篇
  1992年   24篇
  1991年   18篇
  1990年   17篇
  1989年   17篇
  1988年   18篇
  1987年   11篇
  1986年   8篇
  1985年   9篇
  1984年   6篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有2028条查询结果,搜索用时 15 毫秒
31.
本研究以清栓酶、川芎嗪为抗栓剂加入葡萄糖中,经紫外线氧透照仪照射后输入静脉,治疗缺血性脑血管病,并与单用抗栓剂组作对照,进行疗效对比,结果发现抗栓剂加紫外线氧透照组的显效率显著高于对照组(P<0.05)。说明经紫外线氧透照后的葡萄糖作为载体,有分解出氧原子以提高血氧含量改善脑组织的缺氧状态,并有激活清栓酶和川芎嗪的效应。  相似文献   
32.
Using31P-,23Na- and39K-NMR, we assessed ischemic changes in high energy phosphates and ion contents of isolated perfused rat hearts continuously and systematically. To discriminate intra- and extracellular Na+, a shift reagent (Dy(TTHA)3–) was used in23Na-NMR study. In39K-NMR study, the extracellular K+ signal was suppressed by inversion recovery pulse sequence in order to obtain intracellular K+ signal without using shift reagnets. During the early period of ischemia, increases in intracellular Na+ and inorganic phosphate (Pi) were observed in addition to the well-documented decreases in creatine phosphate and ATP and a fall of intracellular pH, suggesting an augmented operation of Na+–H+ exchange triggered by a fall of the intracellular pH resulted from breakdown of ATP. At around 15 min of ischemia, a second larger increase in intracellular Na+ and a decrease in intracellular K+ were observed in association with a second increase in Pi. This was accompnanied by an abrupt rise of the ventricular end-diastolic pressure. As there was a depletion of ATP at this time, the increase in intracellular Na+ and associated decrease in intracellular K+ may be explained by inhibition of the Na+–K+ ATPase due to the depletion of ATP. A longer observation with31P-NMR revealed a second phosphate peak (at lower magnetic field to ordinary Pi peak) which increased its intensity as ischemic time lengthened. The pH of this 2nd peak changed in parallel with the changes in pH of the bathing solution, indicating the appearance of a compartment whose hydrogen concentration is in equilibrium with that of the external compartment. Thus, the peak could be used as an index of irreversible membrane damage of the myocardium.  相似文献   
33.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   
34.
Protective effect of hypothermia during ischemia in neural cell cultures   总被引:5,自引:0,他引:5  
Hypothermia offers protection from the effects of ischemia in small animals. We have recently shown that similar to small animals, hypothermia may also be protective in an astrocytic model of simulated ischemia in cell culture. This study was designed to look at the protective effects of hypothermia in cultures of cerebellar granular (glutamatergic) and cortical (GABAergic) neurons. We used LDH release into the medium as an indicator for neuron damage. Experiments were all done in sister cultures, in groups of six cultures at two temperatures (37 and 32 degrees Celsius). The duration of ischemia was three hours in cerebellar granular neuronal cell cultures and six hours in cortical neurons. LDH release was measured immediately after the insult. Hypothermia protected both granular and cortical neurons. In granular cells, LDH release was 62+/–18 at 32 degrees and 212+/–15 at 37 degrees (p=0.02). Cortical neurons showed LDH release of 15+/–2 at 32 degrees and 32+/–2 at 37 degrees (p=0.005). Our study suggests that similar to astrocytes, the protective effects of hypothermia are evident in neuronal cell cultures from the cerebellum and the cerebral cortex. Cell culture systems should prove useful techniques in understanding mechanisms of hypothermic protection during simulated ischemia in neurons from different sites.  相似文献   
35.
Short-term incomplete cerebral ischemia was induced in the rat by bilaterally clamping for 5 min the common carotid arteries; subsequent reperfusion of 10 min was obtained by removing carotid occlusion. At the end of ischemia or reperfusion, animals were sacrificed by decapitation. A control group was represented by sham-operated rats. Peripheral venous blood samples were withdrawn from the femoral vein from rats subjected to cerebral reperfusion 5 min before ischemia, at the end of ischemia, and 10 min after reperfusion. A highly sensitive HPLC method for the direct determination of malondialdehyde, oxypurines, and nucleosides was used on 200 μL of brain tissue and plasma extracts. Incomplete cerebral ischemia induced the, appearance of a significant amout of tissue malondialdehyde (undetectable in control animals) and a decrease of ascorbic acid. A further 6.6-fold increase of malondialdehyde and a 18.5% decrease of ascorbic acid occurred after 10 min of reperfusion. Plasma malondialdehyde, which was present in minimal amount before ischemia, significantly increased after 5 min of ischemia, being strikingly augmented after 10 min of reperfusion. A similar trend was observed for oxypurines and nucleosides. From these data, it can be affirmed that tissue concentrations of malondialdehyde and ascorbic acid, and plasma levels of malondialdehyde, oxypurines, and nucleosides, reflect both the oxygen radical-mediated tissue injury and the depression of energy metabolism thus representing early biochemical markers of short-term incomplete brain ischemia, and reperfusion in the rat.  相似文献   
36.
37.
Abstract: Activation of the N -methyl- d -aspartate (NMDA) receptor has been implicated in the events leading to ischemia-induced neuronal cell death. Recent studies have indicated that the properties of the NMDA receptor channel may be regulated by tyrosine phosphorylation. We have therefore examined the effects of transient cerebral ischemia on the tyrosine phosphorylation of NMDA receptor subunits NR2A and NR2B in different regions of the rat brain. Transient (15 min) global ischemia was produced by the four-vessel occlusion procedure. The tyrosine phosphorylation of NR2A and NR2B subunits was examined by immunoprecipitation with anti-tyrosine phosphate antibodies followed by immunoblotting with antibodies specific for NR2A or NR2B, and by immunoprecipitation with subunit-specific antibodies followed by immunoblotting with anti-phosphotyrosine antibodies. Transient ischemia followed by reperfusion induced large (23–29-fold relative to sham-operated controls), rapid (within 15 min of reperfusion), and sustained (for at least 24 h) increases in the tyrosine phosphorylation of NR2A and smaller increases in that of NR2B in the hippocampus. Ischemia-induced tyrosine phosphorylation of NR2 subunits in the hippocampus was higher than that of cortical and striatal NR2 subunits. The enhanced tyrosine phosphorylation of NR2A or NR2B may contribute to alterations in NMDA receptor function or in signaling pathways in the postischemic brain and may be related to pathogenic events leading to neuronal death.  相似文献   
38.
The release of the neurotransmitter, glutamate, and the activation of receptor operated calcium channels, may increase the degree of damage in ischemic brain tissue. Inhibition of excitatory neurotransmitters should therefore result in cytoprotection of ischemic brain tissue. In this study we evaluated the effect of baclofen, an inhibitor of presynaptic glutamate release, on ischemic gerbil cortex, hippocampus (CA 1 and CA4), striatum and thalamus. Histological evaluation was done in a blind manner in 4 groups (total 36 animals): a control group (9 animals) and three groups (27 animals) with varying doses of baclofen. For cerebral ischemia, we used single episode of five minutes of arterial occlusion of the carotid arteries. Baclofen in doses of 0, 25, 50, and 100 mg/kg were given to different groups five minutes prior to ischemic insult. This was followed by intraperitoneal injections given 24 and 48 hours after the initial insult. Statistically significant histological cytoprotection was demonstrated. Doses of 25 mg/kg appeared to demonstrate significant protection of the cortex (p=0.0002), the CA1 and CA4 regions of the hippocampus (p=0.0004 and 0.0001) respectively. At a dose of 50 mg/kg, significant cytoprotection was demonstrated at the hippocampus (CA1 and CA4 regions), in particular at the CA4 region (p=0.0029). The 100 mg/kg dose appeared to have most significant protection at the CA1 and CA4 regions of the hippocampus (both p=0.0001), striatum (p=0.0011), and the thalamus (p=0.0008). All statistical comparisons were done using non-parametric tests (Mann-Whitney U test). Our study demonstrates that baclofen is cytoprotective to ischemic neuronal cells, especially in the hippocampus. Clinically this may be beneficial to those patients with strokes or head injuries.  相似文献   
39.
GABAergic neurons in the striatum are very sensitive to the effects of ischemia. The progressive decline in striatal GABA following transient forebrain ischemia in gerbils may be secondary to either a decreased production or an increase in reuptake mechanisms or both. The current experiment was designed to evaluate release of GABA by stimulation with K+ or inhibition of its uptake with nipecotic acid or their combination (K+ nipecotic) after repetitive forebrain ischemia in gerbils by in-vivo microdialysis on Days 1, 3, 5, and 14 following the insult. Infusion of nipecotic acid or potassium chloride, resulted in a significant increase in extracellular GABA. This response was significantly decreased in the post-ischemic animals. The synergistic effect of increased GABA concentrations by the infusion of nipecotic acid+potassium chloride seen in the controls was not evident in the post-ischemic animals. In conclusion, though there is a reduction in the extracellular GABA concentrations in the first week following an ischemic insult, restorative mechanisms are operative in the second week as seen by the increasing GABA concentrations.  相似文献   
40.
万梅  于占久 《生理学报》1995,47(3):231-237
血管内皮产生的内皮衍生舒张因子(endothelium-derived relaxing factor,EDRF)即一氧化氮(nitric oxide,NO)本工作分别在大鼠Langendorff离体心脏灌流模型和培养的大鼠心肌细胞上观察了NO、NO的前体物质L-精氨酸(L-Arg)、NO的前体物质L-精氨酸(L-Arg)、NO的合成阻断剂L-硝基精氨酸(L-NNA)对心肌缺血(缺氧)再灌注(复氧  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号