首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   22篇
  国内免费   11篇
  484篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   12篇
  2015年   7篇
  2014年   9篇
  2013年   20篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   18篇
  2008年   19篇
  2007年   21篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   27篇
  2002年   13篇
  2001年   30篇
  2000年   14篇
  1999年   23篇
  1998年   23篇
  1997年   28篇
  1996年   20篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
71.
The field experiment was carried out in order to compare the response of a CAM plant, Sedum album L., to solar radiation at a high altitude (2 100 m) with that at a low altitude location with respect to CAM and phenolic content. Treatment sites included (1) sun‐exposed, low altitude, (2) sun‐exposed, high altitude with different light treatments, including UV‐B and UV‐B + A screening, and (3) shade at high altitude. After a 70‐day treatment period, CAM‐cycling and phenolic compound content were analysed, and high altitude treatments were compared to the low altitude control. The sun‐exposed low altitude control was characterized by CAM‐cycling and a low phenolic compound content during the experiment. In plants transplanted to the high altitude, only the shaded group maintained a CAM‐cycling and a phenolic compound content similar to those of the sun‐exposed low altitude control. Samples under UV‐B and UV‐B + A filters showed similar responses, suggesting the absence of a specific UV‐A radiation effect. The screening of UV‐B or UV‐B + A radiation allowed plants to partially maintain a CAM‐cycling and induced a decrease in phenolic compound content. These responses under UV filters were, however, intermediate between those observed in sun‐exposed and shaded groups. These results demonstrate a specific effect of radiation from both visible (400–800 nm) and UV‐B (280–320 nm) bands on both CAM‐cycling and phenolic biosynthesis in S. album L. plants. These light‐dependent effects are discussed on a physiological basis and a possible interaction between CAM‐cycling and phenolic metabolism is suggested.  相似文献   
72.
Growth, dark respiration rate, photosynthetic parameters, and chemical composition were determined for Emiliania huxleyi (Lohmann) Hay et Mohler acclimated to different combinations of day length (12, 18, 24 h) and irradiance (30, 100, 200, 800 μmol·m−2·s−1). Specific growth rate (μ, day−1) and carbon-specific dark respiration rate (rCd, day−1) were independent of day length, but increased significantly with increasing irradiance. The photosynthetic parameters depended on the initial acclimation day length and irradiance: Chlorophyll a-specific maximum photosynthetic rate (PmB) increased up to threefold with decreasing day length and twofold with increasing irradiance. The maximum light utilization coefficient (αB) and maximum quantum yield (φm) increased up to threefold with decreasing day length. αB increased almost four-fold with decreasing irradiance, whereas φm was independent of irradiance. Literature data for phytoplankton indicate that PmB consistently increases with increasing irradiance, and day length-irradiance responses of αB and φm are species specific. Results from the present experiment and other studies indicate that if day length-irradiance variability in the photosynthetic parameters are neglected, this may cause an over- or underestimation up to a factor of two in the photosynthetic rate estimation based on these parameters.  相似文献   
73.
The performance of Haematococcus pluvialis in continuous photoautotrophic culture has been analyzed, especially from the viewpoint of astaxanthin production. To this end, chemostat cultures of Haematococcus pluvialis were carried out at constant light irradiance, 1,220 microE/m2.s, and dilution rate, 0.9/d, but varying the nitrate concentration in the feed medium reaching the reactor, from 1.7 to 20.7 mM. Both growth and biomass composition were affected by the nitrate supply. With saturating nitrate, the biomass productivity was high, 1.2 g/L.d, but astaxanthin accumulation did not take place, the C/N ratio of the biomass being 5.7. Under moderate nitrate limitation, biomass productivity was decreased, as also did biomass concentration at steady state, whereas accumulation of astaxanthin developed and the C/N ratio of the biomass increased markedly. Astaxanthin accumulation took place in cells growing and dividing actively, and its extent was enhanced in response to the limitation in nitrate availability, with a recorded maximum for astaxanthin cellular level of 0.8% of dry biomass and of 5.6 mg/L.d for astaxanthin productivity. The viability of a significant continued generation of astaxanthin-rich H. pluvialis cells becomes thus demonstrated, as also does the continuous culture option as an alternative to current procedures for the production of astaxanthin using this microalga. The intensive variable controlling the behavior of the system has been identified as the specific nitrate input, and a mathematical model developed that links growth rate with both irradiance and specific nitrate input. Moreover, a second model for astaxanthin accumulation, also as a function of irradiance and specific nitrate input, was derived. The latter model takes into account that accumulation of astaxanthin is only partially linked to growth, being besides inhibited by excess nitrate. Simulations performed fit experimental data and emphasize the contention that astaxanthin can be efficiently produced under continuous mode by adjustment of the specific nitrate input, predicting even higher values for astaxanthin productivity. The developed models represent a powerful tool for management of such an astaxanthin-generating continuous process, and could allow the development of improved systems for the production of astaxanthin-rich Haematococcus cells.  相似文献   
74.
The underwater light field in blackwater environments is strongly skewed toward the red end of the electromagnetic spectrum due to blue light absorption by colored dissolved organic matter (CDOM). Exposure of phytoplankton to full spectrum irradiance occurs only when cells are mixed up to the surface. We studied the potential effects of mixing‐induced changes in spectral irradiance on photoacclimation, primary productivity and growth in cultures of the cryptophyte Rhodomonas salina and the diatom Skeletonema costatum. We found that these taxa have very different photoacclimation strategies. While S. costatum showed classical complementary chromatic adaption, R. salina showed inverse chromatic adaptation, a strategy previously unknown in the cryptophytes. Transfer of R. salina to periodic full spectrum light (PFSL) significantly enhanced growth rate (μ) by 1.8 times and primary productivity from 0.88 to 1.35 mg C · (mg Chl?1) · h?1. Overall, R. salina was less dependent on PFSL than was S. costatum, showing higher μ and net primary productivity rates. In the high‐CDOM simulation, carbon metabolism of the diatom was impaired, leading to suppression of growth rate, short‐term 14C uptake and net primary production. Upon transfer to PFSL, μ of the diatom increased by up to 3‐fold and carbon fixation from 2.4 to 6.0 mg C · (mg Chl?1) · h?1. Thus, a lack of PFSL differentially impairs primarily CO2‐fixation and/or carbon metabolism, which, in turn, may determine which phytoplankton dominate the community in blackwater habitats and may therefore influence the structure and function of these ecosystems.  相似文献   
75.
Rates of tree growth in tropical forests reflect variation in life history strategies, contribute to the determination of species' distributional limits, set limits to timber harvesting and control the carbon balance of the stands. Here, we review the resources that limit tree growth at different temporal and spatial scales, and the different growth rates and responses of functional groups defined on the basis of regeneration strategy, maximum size, and species' associations with particular edaphic and climatic conditions.Variation in soil water availability determines intra- and inter-annual patterns of growth within seasonal forests, whereas irradiance may have a more important role in aseasonal forests. Nutrient supply limits growth rates in montane forests and may determine spatial variation in growth of individual species in lowland forests. However, its role in determining spatial variation in stand-level growth rates is unclear. In terms of growth rate, we propose a functional classification of tropical tree species which contrasts inherently fast-growing, responsive species (pioneer, large-statured species), from slow-growing species that are less responsive to increasing resource availability (shade-bearers, small-statured species). In a semi-deciduous forest in Ghana, pioneers associated with high-rainfall forests with less fertile soils, had significantly lower growth rates than pioneers that are more abundant in low-rainfall forests with more fertile soils. These results match patterns found in seedling trials and suggest for pioneers that species' associations with particular environmental conditions are useful indicators of maximum growth rate.The effects of variation in resource availability and of inherent differences between species on stand-level patterns of growth will not be independent if the functional group composition of tropical forests varies along resource gradients. We find that there is increasing evidence of such spatial shifts at both small and large scales in tropical forests. Quantifying these gradients is important for understanding spatial patterns in forest growth rates.  相似文献   
76.
77.
In the untransformed rice (WT) and transgenic rice with the PEPC and PPDK genes (CK) we determined activities of C4 photosynthetic enzymes, photosynthetic response to irradiance and temperature, the metabolic index of active oxygen, and the yield component factors. The activities of C4 photosynthetic enzymes in WT were very low, while those of corresponding enzymes in CK were highly observable. Moreover, after adenosine triphosphate (ATP) treatment, and under high irradiance and high temperature, the net photosynthetic rate of CK increased by 17 and 12 %, respectively, as compared to that achieved without ATP treatment. The resistance of CK against photo-oxidation was enhanced under these conditions, and CK yield increased by 15 %. ATP treatment enhanced the photosynthetic productivity of CK, thereby proving that ATP is the key factor in enhancing the photosynthetic capacity of transgenic rice with C4 gene. Our new technical approach can be used in breeding rice with high photosynthetic efficiency and high grain yield.  相似文献   
78.
Aim This first global quantification of the relationship between leaf traits and soil nutrient fertility reflects the trade‐off between growth and nutrient conservation. The power of soils versus climate in predicting leaf trait values is assessed in bivariate and multivariate analyses and is compared with the distribution of growth forms (as a discrete classification of vegetation) across gradients of soil fertility and climate. Location All continents except for Antarctica. Methods Data on specific leaf area (SLA), leaf N concentration (LNC), leaf P concentration (LPC) and leaf N:P were collected for 474 species distributed across 99 sites (809 records), together with abiotic information from each study site. Individual and combined effects of soils and climate on leaf traits were quantified using maximum likelihood methods. Differences in occurrence of growth form across soil fertility and climate were determined by one‐way ANOVA. Results There was a consistent increase in SLA, LNC and LPC with increasing soil fertility. SLA was related to proxies of N supply, LNC to both soil total N and P and LPC was only related to proxies of P supply. Soil nutrient measures explained more variance in leaf traits among sites than climate in bivariate analysis. Multivariate analysis showed that climate interacted with soil nutrients for SLA and area‐based LNC. Mass‐based LNC and LPC were determined mostly by soil fertility, but soil P was highly correlated to precipitation. Relationships of leaf traits to soil nutrients were stronger than those of growth form versus soil nutrients. In contrast, climate determined distribution of growth form more strongly than it did leaf traits. Main conclusions We provide the first global quantification of the trade‐off between traits associated with growth and resource conservation ‘strategies’ in relation to soil fertility. Precipitation but not temperature affected this trade‐off. Continuous leaf traits might be better predictors of plant responses to nutrient supply than growth form, but growth forms reflect important aspects of plant species distribution with climate.  相似文献   
79.
Fragments of Ecklonia cava Kjellman were cultured under controlled laboratory conditions of light irradiance, water temperature, and photoperiod. To clarify the relationship between the maturation of E. cava and the photosynthetic products, laminaran, the content in the fragments was measured with the progress of maturation. The culture conditions ranged from 12.5 to 100 µmol m?2 s?1, 10–25°C, and 14 : 10 h LD (light : dark) to 10 : 14 h LD. In the case of low light conditions, despite an optimum temperature for maturation, the fragments did not form sori and laminaran was not accumulated during the culture period. In the case of sufficient light and non‐optimum temperature conditions, the fragments did not form sori, but laminaran was accumulated. When the fragments were cultured under optimum light and temperature conditions for maturation, laminaran was accumulated in the early stage of maturation, just before or after cortex of the bladelets thickened, and decreased with the progress of maturation, and all fragments matured regardless of the length of the photoperiod. So, these results support the idea that laminaran is used as the main respiratory substrate in the maturation of E. cava.  相似文献   
80.
吴芳芳  郑有飞  吴荣军  王锦旗  李萍 《生态学报》2014,34(20):5840-5848
为研究臭氧浓度升高和太阳辐射减弱复合背景下,麦田土壤反硝化作用及N2O排放的变化,采用开顶箱(OTC)法和遮光网技术,设置3个臭氧浓度梯度及3个辐射减弱梯度,连续4a对小麦生长季麦田土壤进行臭氧浓度增加太阳辐射减弱以及它们的复合作用的试验。采用MPN(最大或然数)法测定反硝细菌的数量,用气相色谱法测定反硝化强度。结果显示反硝化细菌数量和反硝化强度受小麦生长发育的影响,在小麦成熟期收割后土壤反硝化细菌数量和反硝化强度增加得特别明显。O3连续作用3个生长季后,以及太阳辐射减弱处理,土壤反硝化菌和反硝化强度显著升高,N2O排放量显著增加。减弱的太阳辐射与增加的O3复合作用,在小麦的每个生育期均显著促进了反硝化菌数量增加和反硝化强度增强,促进率显著高于O3和遮荫的单独作用。结果说明,O3浓度增加以及太阳辐射减弱对土壤反硝化菌和反硝化强度均有一定的促进作用,减弱的太阳辐射与高浓度的O3两因素之间存在协作关系,太阳辐射减弱有利O3的吸收,增加O3伤害,促进反硝化过程。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号