首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   451篇
  免费   22篇
  国内免费   11篇
  484篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   7篇
  2018年   3篇
  2017年   4篇
  2016年   12篇
  2015年   7篇
  2014年   9篇
  2013年   20篇
  2012年   10篇
  2011年   6篇
  2010年   7篇
  2009年   18篇
  2008年   19篇
  2007年   21篇
  2006年   18篇
  2005年   16篇
  2004年   17篇
  2003年   27篇
  2002年   13篇
  2001年   30篇
  2000年   14篇
  1999年   23篇
  1998年   23篇
  1997年   28篇
  1996年   20篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   8篇
  1991年   10篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   3篇
  1980年   4篇
  1979年   3篇
  1978年   1篇
排序方式: 共有484条查询结果,搜索用时 15 毫秒
61.
Molina  Ximena  Montecino  Vivian 《Hydrobiologia》1996,326(1):415-420
Photoautotrophs can cope with an increase in ultraviolet (UV) irradiance in the aquatic environment, through protection and acclimation mechanisms (i.e. synthesis of UV-absorbing compounds). This capacity has been proven to vary according to the organism's sensitivity. To quantify variations of this capacity between the different parts of macroalgae, an in vitro study was performed with the tips, cystocarps and thalli segments of Gracilaria chilensis. Whole algae incubated during 3 days at high and low PAR, supplying UV B (4.6 µW cm–2) during 2 hours showed, as predicted, an increase in absorption (OD) at 320 nm of the different parts, after the first day of exposure to UV B. The tips presented the highest increase in the standardized OD at 320 nm relative to cystocarps and thalli segments; their mean percentage of increase was 38% and 29% at low and high PAR, respectively. The lowest sensitivity was consistently found in the thalli segments, while the highest was in the tips. The tips are important for growth and therefore they play a major role in the maintenance of the Gracilaria populations. Acclimation mechanisms that occurred in a short time scale, and mainly in the tips, may allow Gracilaria to have an almost immediate protection to increases in UV B fluxes.  相似文献   
62.
NEW LIGHT ON THE SCALING OF METABOLIC RATE WITH THE SIZE OF ALGAE   总被引:1,自引:0,他引:1  
The scaling of metabolic rate with the size of algae has been discussed and researched at length. The observation that algae usually have exponents b in the equation R = a· W b (where R is the specific growth rate, W is the organism [cell] biomass, and a and b are constants) equal to or higher than the value of −0.25 for many other organisms is generally related to resource-saturated (maximal) values of R. Recent work has shown that the exponent b for light-limited growth is more negative than −0.25. This was predicted from considerations of the package effect in photon absorption, as modulated by the volume-specific pigment content of the cells, and the photosynthetic unit size. Further work is needed to extrapolate these findings to fluctuating light environments. This minireview puts the recent work into a broader context and suggests how further work could quantify the roles of optical thickness and of spatial and temporal variations in the radiation field in determining metabolic rates.  相似文献   
63.
Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long‐term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28‐year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO2 had on average an approximately three‐, four‐, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO2. Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO2 will likely continue to climb over the next century, a long‐term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation.  相似文献   
64.
Monostroma angicava and Protomonostroma undulatum are monostromatic green benthic algae (Ulvophyceae), which grow together in the same intertidal habitat of Muroran, Hokkaido, Japan, during the spring season. Commonly, both species have a single chloroplast with one pyrenoid per cell. The parietal chloroplast is located on the periphery of the thallus in both species, although the location of the chloroplast differs in the two. In M. angicava , the chloroplast was observed to be arranged on one‐side of the thallus surface, whereas, in P. undulatum , it was dispersed and randomly located on either side of the thallus or on the lateral face. The density of chlorophylls (Chls) assessed from the absorption spectra of the thallus and its solvent extract was higher in M. angicava , which appeared dark‐green in color, than in the light‐green colored P. undulatum . The maximum photosynthetic rate per thallus area (μmol O2 m?2 s?1) was higher in M. angicava , whereas, per total chlorophyll content (μmol O2 g Chl a + Chl b ?1 s?1) was higher in P. undulatum . Both species showed similar efficiency of photosynthesis at light‐limiting conditions. The efficiency of light absorption by photosystem II (PSII ) in P. undulatum was higher than M. angicava , whereas the photoprotective response was higher in M. angicava . This indicates that more energy is utilized in M. angicava to protect its PSII due to the chloroplast position, which has more direct exposure to light and, therefore, lowers the efficiency of light absorption by PSII . The higher density of chlorophylls in M. angicava could explain higher photosynthesis per thallus area, whereas, higher efficiency of light absorption by PSII in P. undulatum could explain higher photosynthesis per total chlorophyll content. The differences in light absorption efficiency and quantum efficiency of PSII might be an important ecological strategy in these two species for their coexistence in the intertidal area.  相似文献   
65.
66.
The activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was examined in three marine microalgae: the chlorophyte t Dunaliella tertiolecta and the chromophytes t Pavlova lutheri and t Thalassiosira pseudonana. The three species differed in the sensitivity of Rubisco activity in crude extracts to magnesium ion concentration, the presence of protease inhibitors, the duration of the incubation on activity, and the potential for full activation of Rubisco with 20 mM magnesium chloride and 20 mM bicarbonate t in vitro. t D. tertiolecta had responses that were similar to those described in vascular plants: regulation of initial activity on a gradient of irradiances; maximum initial activities that were 80– 90% of light-saturated photosynthesis; total activities that exceeded light-saturated photosynthesis by 30–100%; and deactivation of Rubisco in darkness. Both initial and total activity declined in darkness and increased on a return to growth irradiance. First-order time constants were about 9 min for deactivation and 3 min for reactivation of initial activity. The decline in total activity after a transition into darkness could not be reversed t in vitro but could be reversed by exposing t D. tertiolecta to light, a characteristic of regulation by CA1P. The responses of t T. pseudonana were qualitatively similar, except that recovery of initial activity was low and could only account for 30–40% of light-saturated photosynthesis. Rubisco from t T. pseudonana exposed to low irradiance could be activated t in vitro but at growth irradiance and higher, total activity was lower than initial activity. The time constants for deactivation and reactivation of initial activity after reciprocal switches between growth irradiance and darkness were 12–18 min and 3 min in t T. pseudonana. t P. lutheri showed no regulation of Rubisco activity in response to changes in irradiance or light-dark transitions. This may have been an artifact of the conditions chosen to measure activity.  相似文献   
67.
The factors controlling the distribution of phytoplankton stocks, species composition, and their physiological status in the Southern Ocean are reviewed. In the last decade, the key data sources have been observational and experimental. Together, they provide a framework to understand the complex temporal and spatial patterns of environmental control within the distinct basins and ecological provinces. High resolution remotely sensed observational data have overcome the issue of geographical remoteness. Furthermore, by exploiting seasonal and spatial differences in algal distributions, observational data have enabled the cross‐correlation of such trends with patterns in other environmental properties. Perturbation experiments have offered a mechanistic understanding to help interpret observational data by altering environmental properties under carefully controlled conditions. A consistent set of trends, on the modes of environmental control of phytoplankton processes, is now emerging across the different basins and provinces. The key determinants are light, iron, and silicic acid supply (top‐down control was not considered). However, their interplay in time and space (i.e. simultaneous limitation of phytoplankton processes) is less clear, requires further study, and is discussed. Future challenges include the need to understand better the mode(s) of environmental control on key algal functional groups via more taxon‐ and species‐specific studies. The initiation of more time‐series moorings with “smart” bio‐optical and sampling sensors are needed to define the seasonal distributions of algal taxa. Moreover, new perturbation experiments are required to investigate the influence on phytoplankton processes of projected climate‐mediated alteration of mixed layer depth and nutrient supply as widely predicted by modelers.  相似文献   
68.
Nitrite uptake and oxygenic photosynthesis by cultures of Chlamydomonas sp. isolated from Lake Superior were measured at different irradiances in order to compare predictive models of nitrite uptake and to assess the proportion of photoreductant (measured as oxygen evolution, mol × 4 eq. mol?1) that is allocated to nitrite assimilation (measured as nitrite uptake, mol × 6 eq. mol?1). These measurements are analogous to measurements of carbon fixation (CO2 uptake) at different irradiances and photosynthetic activities. Nitrite uptake as a function of irradiance did not follow Michaelis-Menten kinetics as proposed for nitrate by MacIsaac and Dugdale (1972) because of inhibition at high irradiances. The Haldane equation described nitrite uptake better. Nitrite uptake as a function of oxygenic photosynthesis followed Michaelis-Menten kinetics. Irradiance-dependent (Haldane) and photosynthesis-dependent models described nitrite uptake equally well. We suggest that nitrite is taken up and assimilated in response to intracellular concentrations of photoreductant that are directly proportional to photosynthetic activity and are related indirectly to irradiance. This contention is supported by photosynthesis-dependent nitrite uptake (Michaelis-Menten) at both light-limited and photoinhibited photosynthetic activities. This is consistent conceptually with deactivation of light traps at high irradiance levels. The proportion of photoreductant allocated to nitrite uptake and assimilation increased markedly at low irradiance levels. This indicates that cells synthesize important N-containing biomolecules across a broader range of irradiance levels than fixation of carbon for synthesis of energy storage and structural products.  相似文献   
69.
Using a factorial design, we investigated the effects of 150 different combinations of irradiance, daylength and temperature on zoosporogenesis in Coleochaete scutata. Analysis of variance (ANOVA) revealed that irradiance and daylength did not .significantly influence the response, out that temperature was highly significant. Exposure of thalli to 20°C for one to several days is sufficient to induce zoospore production in C. scutata and several other northern temperature species of Coleochaete. Results of the factorial experiment correlate well with field observations on the seasonal occurrence of asexual reproduction in several Coleochaete species. A technique based on results of this factorial study is described for using zoospores to obtain morphologically normal, unialgal cultures of Coleochaete .sp. It was concluded that the factorial approach to investigation of environmental control of zoosporogenesis can be a powerful tool for understanding natural algal population dynamics, as well as controlling growth and reproduction of algae in the laboratory.  相似文献   
70.
Productivity of seagrasses can be controlled by physiological processes, as well as various biotic and abiotic factors that influence plant metabolism. Light, temperature, and inorganic nutrients affect biochemical processes of organisms, and are considered as major factors controlling seagrass growth. Minimum light requirements for seagrass growth vary among species due to unique physiological and morphological adaptations of each species, and within species due to photo-acclimation to local light regimes. Seagrasses can enhance light harvesting efficiencies through photo-acclimation during low light conditions, and thus plants growing near their depth limit may have higher photosynthetic efficiencies. Annual temperatures, which are highly predictable in aquatic systems, play an important role in controlling site specific seasonal seagrass growth. Furthermore, both thermal adaptation and thermal tolerance contribute greatly to seagrass global distributions. The optimal growth temperature for temperate species range between 11.5 °C and 26 °C, whereas the optimal growth temperature for tropical/subtropical species is between 23 °C and 32 °C. However, productivity in persistent seagrasses is likely controlled by nutrient availability, including both water column and sediment nutrients. It has been demonstrated that seagrasses can assimilate nutrients through both leaf and root tissues, often with equal uptake contributions from water column and sediment nutrients. Seagrasses use HCO3 inefficiently as a carbon source, thus photosynthesis is not always saturated with respect to DIC at natural seawater concentrations leading to carbon limitation for seagrass growth. Our understanding of growth dynamics in seagrasses, as it relates to main environmental factors such as light, temperature, and nutrient availability, is critical for effective conservation and management of seagrass habitats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号