首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3617篇
  免费   254篇
  国内免费   237篇
  2024年   7篇
  2023年   73篇
  2022年   89篇
  2021年   96篇
  2020年   122篇
  2019年   141篇
  2018年   121篇
  2017年   105篇
  2016年   99篇
  2015年   130篇
  2014年   135篇
  2013年   288篇
  2012年   135篇
  2011年   106篇
  2010年   107篇
  2009年   138篇
  2008年   127篇
  2007年   128篇
  2006年   166篇
  2005年   166篇
  2004年   145篇
  2003年   138篇
  2002年   157篇
  2001年   111篇
  2000年   78篇
  1999年   83篇
  1998年   79篇
  1997年   73篇
  1996年   81篇
  1995年   61篇
  1994年   77篇
  1993年   78篇
  1992年   64篇
  1991年   75篇
  1990年   51篇
  1989年   51篇
  1988年   27篇
  1987年   42篇
  1986年   23篇
  1985年   27篇
  1984年   27篇
  1983年   6篇
  1982年   19篇
  1981年   8篇
  1980年   9篇
  1979年   14篇
  1978年   6篇
  1976年   7篇
  1975年   3篇
  1974年   3篇
排序方式: 共有4108条查询结果,搜索用时 15 毫秒
41.
A method for the determination of desferrioxamine-available iron in tissue fractions is described which involves incubation with desferrioxamine, extraction of desferrioxamine and its iron-bound form, ferrioxamine, and quantitation of these two forms of the drug by reversed-phase hplc analysis. Chelatable iron levels in the 1-10µMolar region could be accurately and reproducibly measured using this technique.

The desferrioxamine-available iron levels in both the cortex and medulla of rabbit kidneys were significantly elevated (up to 2-fold) after the organs had been subjected to 2 hours warm ischaemia or 24 hours cold storage at 0°C In hypertonic citrate solution. There was no change in the total iron content of the tissues under these circumstances and thus a redistribution of intracellular iron to more available pools had presumably taken place as a result of ischaemia. This redistribution of iron may be an important factor in the initiation of peroxidative damage to cell membranes upon reperfusion of the organ with oxygen.  相似文献   
42.
Crude striatum synaptosomes (P2 fraction) from Fisher 344 female rats were incubated in the presence of ADP-chelated Fe3+ (0.5–50 M) and ascorbate (250 M). Intrasynaptosomal conversion of tyrosine to dopamine (DA) was measured by14CO2 evolution froml-[1-14C]tyrosine in the absence of added cofactors and DOPA decarboxylase. Malondialdehyde (MDA) was measured as an index of lipid peroxidation. A concentration-dependent inhibition of DA synthesis by ADP-Fe3+/ascorbate was found with 50% inhibition occurring at 2.5 M Fe3+ concentration. This was accompanied by marked accumulation of MDA. Ascorbate or ADP alone did not affect DA synthesis and ADP-Fe3+ in the absence of exogenous ascorbate was effective only above 25 M. Exogenously added MDA did not inhibit DA synthesis. Purified synaptosomes were isolated from peroxidized and control P2 fractions using sucrose gradients. Membrane microviscosity of the purifled synaptosomes was assessed by nitroxyl spin labels of stearic acid using electron paramagetic resonance techniques. There was a significant increase in membrane microviscosity as a result of ADP-Fe3+/ascorbate induced peroxidation. Maleimide nitroxide spin-label binding to protein sulhydryls was significantly modified by peroxidation of striatum synaptosomes. The weakly immobilized component of the sulhydryl spin-label (w) was drastically decreased whereas the strongly immobilized component (s) was modified less, thus leading to a marked reduction of w/s ratio. The exposure of striatum synaptosomes to the peroxidizing system resulted in a significant increase in total iron and in a 25% decrease in protein sulhydryl content. It is concluded that ironinduced damage to the DA synthetic system is mediated by alterations of the structural properties of nerve ending membranes.  相似文献   
43.
Under stress of iron deficiency roots of sunflower (Helianthus annuus L.) increase proton efflux which acidifies the root medium, increase the ferric reducing capacity and the exudation of phenolic compounds. Differences have been found previously among sunflower inbred lines in the capacity of their roots to lower pH and it was also found that this character is under genetic control.This work presents the results of an inheritance study made by crossing two genotypes, one (CMS HA 89) without acidification capacity and another (RHA 271) with it. Plants were grown individually in 75 mL vessels with an aerated solution low in iron. After 4 days, solutions were changed to one without iron and the pH of the medium was measured during the following days. Results from F1, F2, and backcross generations can be explained with two pairs of alleles controlling the character, being the relation between alleles of complete dominance at both gene pairs, but either gene, when dominant is epistatic to the other.  相似文献   
44.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
45.
Several indexes are used to determine the iron nutritional status of plants, but their effectiveness depends either on the plant growth conditions in natural environments or on the assay conditions. This research was conducted to test different indexes of the iron nutritional status of a hydroponic strawberry culture where treatments mainly differed in the source of the iron applied: Fe-EDTA, Fe-EDDHA and Fe-polyflavonoid. Macro and micronutrient concentrations in the nutrient solutions, leaf and vascular tissues were measured. Fe concentration in the nutrient solution during the course of the experiment was considered in relation to the stability of the different chelates. Both Fe concentration and total Fe content of leaves reflected the effect of the treatments; Fe/Mn ratio was significant as a diagnosis index. Other element ratios as P/Fe and K/Ca are not well related with the iron nutrition symptoms observed. Fe2+ concentration measured in leaves was not directly affected by the different chelate treatments.  相似文献   
46.
Concentrations of copper, zinc, and iron were analyzed and compared in a number of tissues of adjuvant arthritic rats following 22 d of chronic treatment (per os) with either vehicle, aspirin or copper aspirinate, at doses of 100 mg/kg, 200 mg/kg, or 400 mg/kg. Such chronic treatment resulted in a negative balance in copper, zinc, and iron in many tissues. Among the tissues examined, liver and kidney exhibited the greatest changes in metal concentrations; brain and skeletal muscle exhibited the least. Arthritis-induced changes in the concentrations of all three metals in the liver were reversed upon treatment with aspirin. Treatment with copper aspirinate, on the other hand, resulted in an extremely high accumulation of copper in the liver. Arthritis-induced changes in copper, zinc, and iron concentrations in the pancreas and copper concentration in the plasma were generally not reversed upon treatment with either aspirin or copper aspirinate. Among the three metals examined, the degree of change observed as a result of drug treatments was greatest for iron and least for zinc. Finally, it appeared that the effects of aspirin and copper aspirinate on tissue metal concentrations were independent of the antiarthritic effects of these compounds.  相似文献   
47.
The role of histidine on DNA breakage induced by hydrogen peroxide (H2O2) and ferric ions or by H2O2 and cupric ions was studied on purified DNA. L-histidine slightly reduced DNA breakage by H2O2 and Fe3+ but greatly inhibited DNA breakage by H2O2 and Cu2+. However, only when histidine was present, the addition of EDTA to H2O2 and Fe3+ exhibited a bimodal dose response curve depending on the chelator metal ratio. The enhancing effect of histidine on the rate of DNA degradation by H2O2 was maximal at a chelator metal ratio between 0.2 and 0.5, and was specific for iron. When D-histidine replaced L-histidine, the same pattern of EDTA dose response curve was observed. Superoxide dismutase greatly inhibited the rate of DNA degradation induced by H2O2, Fe3+, EDTA and L-histidine involving the superoxide radical.

These studies suggest that the enhancing effect of histidine on the rate of DNA degradation by H2O2 and Fe3+ is mediated by an oxidant which could be a ferrous-dioxygen-ferric chelate complex or a chelate-ferryl ion.  相似文献   
48.
Growth of Euglena gracilis Z Pringsheim under photoheterotrophic conditions in a nitrogen-deprived medium resulted in progressive loss of chloroplastic material until total bleaching of the cells occurred. Biochemical analysis and ultrastructural observation of the first stages of the starvation process demonstrated an early lag phase (from 0 to 9 h) in which cells increased in size, followed by a period of cell division, apparently supported by the mobilization of some chloroplastic proteins such as the photosynthetic CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. The degradation of the enzyme started after 9 h of starvation and was preceded by a transient concentration of this protein in pyrenoidal structures. Protein nitrogen and photosynthetic pigments as well as number of chloroplasts per cell decreased during proliferation through mere distribution among daughter cells. However, after 24 h, when cell division had almost ceased, there was a slow but steady decline of photosynthetic pigments. This was paralleled by observable ultrastructural changes including progressive loss of chloroplast structure and accumulation of paramylon granules and lipid globules in the cytoplasm. These findings reinforce the role of chloroplastic materials as a nitrogen source during starvation of E. gracilis in a carbon-rich medium. The excess of ribulose-1,5-bisphosphate carboxylase/oxygenase acts as a first reservoir that, once exhausted, is superseded by the generalized disassembly of the photosynthetic structures, if the adverse environment persists more than 24 h.  相似文献   
49.
Final instar Persectania ewingii (Westwood) (Lepidoptera: Noctuidae) were fed seedling Triticum aestivum L. for 2 days to determine the approximate digestibility of the cell wall and cell content fractions. Cell wall content was estimated using a micro-analytical neutral detergent fibre technique. Approximate digestibilites of neutral detergent fibre, neutral detergent solubles and dry matter were calculated for individuals and pooled samples. P. ewingii larvae digested a small but significant proportion of the fibre ingested (13–21%), higher than that previously reported for herbivorous insects. The micro-analytical and previously used macro-analytical techniques produced similar estimates of digestibility although both techniques have inherent shortcomings, the latter requiring the pooling of samplex and the former limiting the number of replicates during chemical analysis. Differences in the amount of larval frass collected during the feeding trial (corrected for consumption) explained much of the variation in digestibility values, while there were no effects of larval mass, overall consumption and total frass produced on digestibility estimates. These results confirm that plant cell contents are the major source of nutrients to larval Lepidoptera although there is some chemical disruption of the plant cell wall.  相似文献   
50.
The Lycaenidae are the second-largest family of butterflies. From host-plant data collated for more than 1200 species worldwide, large-scale taxonomic, geographical and ecological patterns emerge which suggest that phytochemical similarities and barriers, coupled with phylogenetic conservatism and constraints are key factors governing hostplant use. More than two thirds of the lycaenid species are restricted to one plant family or genus. Affiliations with toxic plants are rare in the Lycaenidae, and excretion rather than sequestration of plant toxins appears to be their usual way of detoxifying host-plant compounds. Flavonoids are frequently sequestered by lycaenid larvae and are subsequently concentrated as pigments in the adults' wings, where they might play a role in visual communication. Mutualistic associations with ants occur in the larvae of more than 50% of the extant Lycaenidae species. Because of a conflict between the nutrient demands of the larvae and the proportion of plant-derived resources allocated to maintain the mutualism with ants, variation in resource quality often translates into variation of mutualistic capacities of the caterpillars, in particular under nutrient stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号