首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4492篇
  免费   271篇
  国内免费   485篇
  5248篇
  2024年   8篇
  2023年   76篇
  2022年   100篇
  2021年   122篇
  2020年   123篇
  2019年   168篇
  2018年   139篇
  2017年   101篇
  2016年   110篇
  2015年   161篇
  2014年   167篇
  2013年   340篇
  2012年   149篇
  2011年   151篇
  2010年   128篇
  2009年   199篇
  2008年   191篇
  2007年   189篇
  2006年   210篇
  2005年   201篇
  2004年   166篇
  2003年   181篇
  2002年   179篇
  2001年   143篇
  2000年   99篇
  1999年   108篇
  1998年   104篇
  1997年   94篇
  1996年   100篇
  1995年   88篇
  1994年   101篇
  1993年   97篇
  1992年   80篇
  1991年   102篇
  1990年   74篇
  1989年   61篇
  1988年   49篇
  1987年   70篇
  1986年   44篇
  1985年   50篇
  1984年   59篇
  1983年   18篇
  1982年   37篇
  1981年   23篇
  1980年   32篇
  1979年   20篇
  1978年   6篇
  1977年   7篇
  1976年   8篇
  1975年   5篇
排序方式: 共有5248条查询结果,搜索用时 15 毫秒
81.
Summary Investigations into iron deficiency have been hindered by the lack of a satisfactory diagnostic tissue test, which in turn results from the total iron content of plant tissue commonly being an unreliable index of the iron status. Our measurements of chlorotic and normal leaves of field grown groundnut (Arachis hypogaea L.) showed that total iron was unsatisfactory as the measure of iron status of plant tissue. It was found that iron status was better assessed from an estimate of the ferrous iron content of fresh leaf materials obtained by extraction with o-phenanthroline. Extractable iron content increased with leaf age. Chlorotic buds or the first fully opened leaf always contained less than 6μg extractable-Fe/g fresh tissue. Approved for publication as ICRISAT Journal Article No. 307.  相似文献   
82.
The aim of this study was to determine the first effect of lead on microbial activity in soil. The study was carried out in the soil samples from four different radish (Raphanus sativus L. var. radicula, Brassicaceae) fields along the highway in a district (Kadirli, Osmaniye) of the Eastern Mediterranean Region, Turkey. After the calculation of Pb contents, the Pb amounts of the soil samples were brought up to 50 and 100 mg Pb kg?1 by treatment with Pb(NO 3 ) 2 , and the samples for the carbon and the nitrogen mineralization were incubated under controlled conditions (28°C, constant moist). The carbon mineralization was determined by a CO 2 respiration method for 30 days. The nitrogen mineralization was observed in vitro for 6 weeks. The untreated group was statistically different from the 50 and 100 mg Pb kg?1 treatments in the aspect of the C(CO 2 ) outlet during mineralization (P ≤ 0.05), but difference between the 50 and 100 mg Pb kg?1 treatments was not significant. NH 4 -N and NO 3 -N contents of each soil were shown differences between across treatments. Based on these results, it is possible to conclude that the addition of 50 and 100 mg Pb kg?1 provided a toxic effect threshold for the microbial activity into 30 days.  相似文献   
83.
84.
85.
Neutrophil influx into tissues occurs in many diverse diseases and can be associated with both beneficial and injurious effects. We hypothesize that the stimulus for certain neutrophilic inflammatory responses can be reduced to a series of competing reactions for iron, with either a labile or reactive coordination site available, between host chelators and chelators not indigenous to that specific living system. The iron focuses the transport of host phagocytic cells through a metal catalyzed generation of oxidant sensitive mediators including cytokines and eicosanoids. Many of these products are chemotactic for neutrophils. We also postulate that the iron increases the activity of the phagocyte associated NADPH oxidoreductase in the neutrophil. The function of this enzyme is likely to be the generation of superoxide in the hostÕs attempt to chemically reduce and dislodge the iron from its chelate complex. After the reoxidation of Fe in an aerobic environment, Fe will be coordinated by host lactoferrin released by the neutrophil. When complexed by this glycoprotein, the metal does not readily undergo oxidation/reduction and is safely transported to the macrophages of the reticuloendothelial system where it is stored in ferritin. Finally, we propose that the neutrophil will attempt to destroy the chelator not indigenous to the host by releasing granular contents other than lactoferrin. Inability to eliminate the chelator allows this sequence to repeat itself, which can lead to tissue injury. Such persistence of a metal chelate in the host may be associated with biomineralization, fibrosis, and cancer.  相似文献   
86.
Iron overload is common in elderly people which is implicated in the disease progression of osteoarthritis (OA), however, how iron homeostasis is regulated during the onset and progression of OA and how it contributes to the pathological transition of articular chondrocytes remain unknown. In the present study, we developed an in vitro approach to investigate the roles of iron homeostasis and iron overload mediated oxidative stress in chondrocytes under an inflammatory environment. We found that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis via upregulating iron influx transporter TfR1 and downregulating iron efflux transporter FPN, thus leading to chondrocytes iron overload. Iron overload would promote the expression of chondrocytes catabolic markers, MMP3 and MMP13 expression. In addition, we found that oxidative stress and mitochondrial dysfunction played important roles in iron overload-induced cartilage degeneration, reducing iron concentration using iron chelator or antioxidant drugs could inhibit iron overload-induced OA-related catabolic markers and mitochondrial dysfunction. Our results suggest that pro-inflammatory cytokines could disrupt chondrocytes iron homeostasis and promote iron influx, iron overload-induced oxidative stress and mitochondrial dysfunction play important roles in iron overload-induced cartilage degeneration.  相似文献   
87.
88.
Iron content of sediment and phosphate adsorption properties   总被引:7,自引:2,他引:7  
Phosphorus can occur in sediments in different forms and accordingly its availability varies. The distinction between the phosphorus fractions is made with two chemical extraction methods; an ammonium oxalate-oxalic acid extraction and an extraction according to Hieltjes & Lijklema (1980).The iron and aluminum liberated with the ammonium oxalate-oxalic acid extraction method is linearly correlated (r 2 = 0.73) with the phosphorus liberated in the first two steps of the Hieltjes and Lijklema extraction by: P = 0.035 (Fe + Al) + 0.001 (P, Fe and Al in mmol g–1).The iron and aluminum (hydr)oxides are very important fractions in the sediment adsorption capacity for phosphorus. The phosphorus sorption capacity (PSC) is 0.080 mol P (mol (Fe + Al))–1 and the adsorption constant (k) is 11.9 µmol P l–1. Here it is assumed that iron and aluminum (hydr)oxide have the same affinity for phosphorus.  相似文献   
89.
Magnetic resonance imaging (MRI) provides an effective approach to track labeled pluripotent stem cell (PSC)‐derived neural progenitor cells (NPCs) for neurological disorder treatments after cell labeling with a contrast agent, such as an iron oxide derivative. Cryopreservation of pre‐labeled neural cells, especially in three‐dimensional (3D) structure, can provide a uniform cell population and preserve the stem cell niche for the subsequent applications. In this study, the effects of cryopreservation on PSC‐derived multicellular NPC aggregates labeled with micron‐sized particles of iron oxide (MPIO) were investigated. These NPC aggregates were labeled prior to cryopreservation because labeling thawed cells can be limited by inefficient intracellular uptake, variations in labeling efficiency, and increased culture time before use, minimizing their translation to clinical settings. The results indicated that intracellular MPIO incorporation was retained after cryopreservation (70–80% labeling efficiency), and MPIO labeling had little adverse effects on cell recovery, proliferation, cytotoxicity and neural lineage commitment post‐cryopreservation. MRI analysis showed comparable detectability for the MPIO‐labeled cells before and after cryopreservation indicated by T2 and T2* relaxation rates. Cryopreserving MPIO‐labeled 3D multicellular NPC aggregates can be applied in in vivo cell tracking studies and lead to more rapid translation from preservation to clinical implementation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:510–521, 2015  相似文献   
90.
Plasma membrane ferric reductase activity was enhanced 5-fold under iron limitation in the unicellular green alga Chlorella kessleri Fott et Nováková. Furthermore, ferric reductase activity in iron-limited cells was approximately 50% higher in the light than in the dark. In contrast, iron uptake rates of iron-limited cells were unaffected by light versus dark treatments. Rates of iron uptake were much lower than rates of ferric reduction, averaging approximately 2% of the dark ferric reduction rate. Ferric reduction was associated with an increased rate of O2 consumption in both light and dark, the increase in the light being approximately 1.5 times as large as in the dark. The increased rate of O2 consumption could be decreased by half by the addition of catalase, indicating that H2O2 is the product of the O2 consumption and that the increased O2 consumption is nonrespiratory. The stimulation of O2 consumption was almost completely abolished by the addition of bathophenanthroline disulfonate, a strong chelator of Fe2 + . Anaerobic conditions or the presence of exogenous superoxide dismutase affected neither ferric reduction nor iron uptake. We suggest that the O2 consumption associated with ferric reductase activity resulted from superoxide formation from the aerobic oxidation of Fe2 + , which is the product of ferric reductase activity. At saturating concentrations of Fe3 + chelates, ferric reductase activity is much greater than the iron uptake rate, leading to rapid oxidation of Fe2 + and superoxide generation. Therefore, O2 consumption is not an integral part of the iron assimilation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号