首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   516篇
  免费   73篇
  国内免费   22篇
  2024年   10篇
  2023年   3篇
  2022年   5篇
  2021年   5篇
  2020年   19篇
  2019年   16篇
  2018年   16篇
  2017年   28篇
  2016年   24篇
  2015年   15篇
  2014年   23篇
  2013年   40篇
  2012年   10篇
  2011年   31篇
  2010年   11篇
  2009年   17篇
  2008年   37篇
  2007年   29篇
  2006年   24篇
  2005年   21篇
  2004年   18篇
  2003年   13篇
  2002年   19篇
  2001年   10篇
  2000年   11篇
  1999年   17篇
  1998年   8篇
  1997年   6篇
  1996年   11篇
  1995年   7篇
  1994年   14篇
  1993年   12篇
  1992年   8篇
  1991年   9篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   8篇
  1982年   6篇
  1981年   4篇
  1980年   8篇
  1979年   3篇
  1978年   1篇
  1976年   2篇
  1973年   2篇
  1971年   1篇
排序方式: 共有611条查询结果,搜索用时 15 毫秒
101.
102.
As an ideal candidate for the next generation of large-scale energy storage devices, sodium-ion batteries (SIBs) have received great attention due to their low cost. However, the practical utility of SIBs faces constraints imposed by geographical and environmental factors, particularly in high-altitude and cold regions. In these areas, the low-temperature (LT) performance of SIBs presents a pressing technological challenge that requires significant breakthroughs. In LT environments, the electrochemical reaction kinetics of SIBs are sluggish, the electrode/electrolyte interface is unstable, and the diffusion of sodium ions in electrode materials is slow, leading to a decrease in battery performance. Therefore, the reasonable design of electrolyte and electrode materials is of great significance for optimizing the LT performance of SIBs. In this review, the research progress of LT SIBs electrolytes, cathode, and anode materials, as well as sodium metal batteries and solid-state electrolytes is systematically summarized in recent years, aiming to understand the design principles of LT SIBs, clarify the basic research and development of high-performance SIBs in practical applications, and promote the development of SIBs technology in the full temperature range.  相似文献   
103.
A flexible composite solid electrolyte membrane consisting of inorganic solid particles (Li1.3Al0.3Ti1.7(PO4)3), polyethylene oxide (PEO), and boronized polyethylene glycol (BPEG) is prepared and investigated. This membrane exhibits good stability against lithium dendrite, which can be attributed to its well‐designed combination components: the compact inorganic lithium ion conducting layer provides the membrane with good mechanical strength and physically barricades the free growth of lithium dendrite; while the addition of planar BPEG oligomers not only disorganizes the crystallinity of the PEO domain, leading to good ionic conductivity, but also facilitates a “soft contact” between interfaces, which not only chemically enables homogeneous lithium plating/stripping on the lithium metal anode, but also reduces the polarization effects. In addition, by employing this membrane to a LiFePO4/Li cell and testing its galvanostatic cycling performances at 60 °C, capacities of 158.2 and 94.2 mA h g?1 are delivered at 0.1 C and 2 C, respectively.  相似文献   
104.
105.
The search for superior‐energy‐density electrode materials for rechargeable batteries is prompted by the continuously growing demand for new electric vehicles and large energy‐storage grids. The structural properties of electrode materials affect their electrochemical performance because their functionality is correlated to their structure at the atomic scale. Although challenging, a deeper and comprehensive understanding of the basic structural operating units of electrode materials may contribute to the advancement of new energy‐storage technologies and many other technologies. Therefore, we must strategically control both the structure and kinetics of electrode materials to achieve optimal electrochemical performance. In this contribution, advancements in synchrotron radiation techniques, specifically in situ/operando experiments on electrode materials for rechargeable batteries, are presented and discussed. Indeed, the latest synchrotron radiation methods offer deeper insights into pristine and chemically modified electrode materials, opening new opportunities to optimize these materials and exploit new technologies. In particular, the most recent results from in situ/operando synchrotron radiation measurements, which play a critical role in the fundamental understanding of the kinetics processes that occur in rechargeable batteries, are discussed.  相似文献   
106.
Visible absorption spectra and circular dichroism (CD) of the red absorption band of isolated photosystem II reaction centers were measured at room temperature during progressive bleaching by electrochemical oxidation, in comparison with aerobic photochemical destruction, and with anaerobic photooxidation in the presence of the artificial electron acceptor silicomolybdate. Initially, selective bleaching of peripheral chlorophylls absorbing at 672 nm was obtained by electrochemical oxidation at +0.9 V, whereas little selectivity was observed at higher potentials. Illumination in the presence of silicomolybdate did not cause a bleaching but a spectral broadening of the 672-nm band was observed, apparently in response to the oxidation of carotene. The 672-nm absorption band is shown to exhibit a positive CD, which accounts for the 674-nm shoulder in CD spectra at low temperature. The origin of this CD is discussed in view of the observation that all CD disappears with the 680-nm absorption band during aerobic photodestruction.  相似文献   
107.
Electrogenerated chemiluminescence (ECL) of a ruthenium complex polymer modified carbon paste electrode and its analytical applications were investigated. The ruthenium complex polymer was prepared using bis(2,2‐bipyridine) (4,4‐dicarboxy‐2,2‐bipyridine) ruthenium(II). The ECL behaviours of ruthenium complex polymer modified carbon paste electrode were investigated in the absence and presence of tripropylamine (TPA). The modified carbon paste electrode exhibited long‐term stability and fine reproducibility. The ECL intensity of the modified carbon paste electrode was linear with the concentration of TPA in the range 2.0 × 10–6–3.8 × 10–3 mol/L, with a detection limit (S:N = 3) of 6 × 10–7 mol/L. It was also found that raceanisodamine could enhance the ECL intensity of the modified electrode. The ECL intensity of the modified carbon paste electrode was linear with the concentration of raceanisodamine in the range 1.1 × 10–5–6.0 × 10–4 mol/L, with a detection limit (S:N = 3) of 6 × 10–6 mol/L. This work demonstrates that the entrapment of ruthenium complex in a highly cross‐linked polymer is a promising approach to construct an ECL modified electrode with long‐term stability and fine reproducibility. The modified electrode designed has a potential application in the ECL detector. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
108.
Vanadium-dependent peroxidase activity in extracts of Ascophyllum nodosum growing in the intertidal region close to Roscoff/France, and algal vanadium levels, followed approximately similar seasonal variation, as deduced from a study lasting from April 2005 to March 2006. High peroxidase (PO) activity was found in extracts obtained from algae collected in between midwinter to spring [∼100-190 U per g dry mass (dm), triiodide assay] with a maximum in April. Periods of reduced PO activity lasted from summer to early winter (∼50-90 U per g dm). High vanadium levels (1.5-2.2 mg kg−1 dm) were found in algae collected from midwinter to spring, whereas reduced levels (0.6-1.4 mg kg−1 dm) were found in summer to early winter.  相似文献   
109.
Four new ternary copper(II) complexes of α-amino acid having polypyridyl bases of general formulation [Cu(l-ala)(B)(H2O)](X) (1-4), where l-ala is l-alanine, B is an N,N-donor heterocyclic base, viz. 2,2′-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2) and 5,6-phenanthroline dione (dione, 3), dipyrido[3,2:2′,3′-f]quinoxaline (dpq, 4), and X = / are synthesized, characterized by various spectroscopic and X-ray crystallographic methods. The complexes show a distorted square-pyramidal (4 + 1) CuN3O2 coordination geometry. The one-electron paramagnetic complexes (1-4) display a low energy d-d band near 600 nm in aqueous medium and show a quasi-reversible cyclic voltammetric response due to one-electron Cu(II)/Cu(I) reduction near −100 mV (versus SCE) in DMF-0.1 M TBAP. Binding interactions of the complexes with calf thymus DNA (CT-DNA) were investigated by UV-Vis absorption titration, ethidium bromide displacement assay, viscometric titration experiment and DNA melting studies. All the complexes barring the complexes 1 and 3 are avid binder to the CT-DNA in the DNA minor groove giving an order: 4 > 2 ? 1, 3. The complexes 2 and 4 show appreciable chemical nuclease activity in the presence of 3-mercaptopropionic acid (MPA) as a reducing agent. Hydroxyl radical was investigated to be the DNA cleavage active species. Control experiments in the presence of distamycin-A show primarily minor groove-binding propensity for the complexes 2 and 4 to the DNA.  相似文献   
110.
The high plasticity of the active-site cavity of cytochromes P450, permitting reactivity toward a vast array of compounds, makes these enzymes attractive targets for biotechnological application. Escalating attention in this area is driven by remarkable progress in the rational design by DNA shuffling of self-sufficient, multi-domain P450/electron donor constructs simplifying the composition of biocatalytic systems. Moreover, versatile approaches were undertaken to supersede the well-established, NAD(P)H-steered proteinaceous redox chains by cost-effective alternative electron transfer conduits constituted of organometallic mediators or photoactivatable redox triggers. Electrochemical techniques have proven particularly useful: employing different types of carbon- and metal-based electrodes for the fabrication of biosensors, the continuing challenge was to optimize the conductive properties of these devices by creating biocompatible interfaces for transferring electrons between sensor surfaces and redox proteins. The present review provides a critical update of the most significant breakthroughs in innovative manipulation of the redox machinery, giving an impulse to exploitation of P450s in fields such as the production of fine chemicals, drug processing, medicinal diagnostics and remediation of biotopes contaminated with harmful environmental pollutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号