全文获取类型
收费全文 | 15243篇 |
免费 | 1209篇 |
国内免费 | 420篇 |
专业分类
16872篇 |
出版年
2024年 | 49篇 |
2023年 | 123篇 |
2022年 | 216篇 |
2021年 | 224篇 |
2020年 | 381篇 |
2019年 | 402篇 |
2018年 | 489篇 |
2017年 | 366篇 |
2016年 | 382篇 |
2015年 | 463篇 |
2014年 | 519篇 |
2013年 | 787篇 |
2012年 | 359篇 |
2011年 | 436篇 |
2010年 | 358篇 |
2009年 | 509篇 |
2008年 | 555篇 |
2007年 | 592篇 |
2006年 | 590篇 |
2005年 | 561篇 |
2004年 | 527篇 |
2003年 | 487篇 |
2002年 | 481篇 |
2001年 | 376篇 |
2000年 | 379篇 |
1999年 | 391篇 |
1998年 | 303篇 |
1997年 | 305篇 |
1996年 | 292篇 |
1995年 | 299篇 |
1994年 | 289篇 |
1993年 | 306篇 |
1992年 | 313篇 |
1991年 | 302篇 |
1990年 | 284篇 |
1989年 | 291篇 |
1988年 | 283篇 |
1987年 | 267篇 |
1986年 | 235篇 |
1985年 | 293篇 |
1984年 | 352篇 |
1983年 | 219篇 |
1982年 | 340篇 |
1981年 | 267篇 |
1980年 | 193篇 |
1979年 | 148篇 |
1978年 | 80篇 |
1977年 | 89篇 |
1976年 | 50篇 |
1974年 | 22篇 |
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
101.
The protonmotive force in several sulfate-reducing bacteria has been determined by means of radiolabelled membrane-permeant probes (tetraphenyl-phosphonium cation, TPP+, for , and benzoate for pH). In six of ten freshwater strains tested only the pH gradient could be determine, while the membrane potential was not accessible due to nonspecific binding of TPP+. The protonmotive force of the other four strains was between –110 and –155 mV, composed of a membrane potential of –80 to –140 mV and a pH gradient between 0.25 and 0.8 (inside alkaline) at pHout=7. In Desulfobulbus propionicus the pH gradient decreased with rising external pH values. This decrease, however, was compensated by an increasing membrane potential. Sulfate, which can be highly accumulated by the cells, did not affect the protonmotive force, if added in concentrations of up to 4 mM. The highest sulfate accumulation observed (2500-fold), which occurred at external sulfate concentrations below 5 M, could be explained by a symport of three protons per sulfate, if equilibrium with the protonmotive force was assumed. At higher sulfate concentrations the accumulation decreased and suggested an electroneutral symport of two protons per sulfate. At sulfate concentrations above 500 M, the cells stopped sulfate uptake before reaching an equilibrium with the protonmotive force.Abbreviations CCCP
carbonyl cyanide m-chlorophenylhydrazone
- MOPS
morpholinopropanesulfonic acid
- TPP+
tetraphenylphosphonium cation
- EDTA
ethylenediaminetetraacetic acid
- pH
transmembrane pH gradient (pHin-pHout)
-
transmembrane electrical potential difference 相似文献
102.
103.
Andreas F.B. Räder Florian Reichart Michael Weinmüller Horst Kessler 《Bioorganic & medicinal chemistry》2018,26(10):2766-2773
The renaissance of peptides in pharmaceutical industry results from their importance in many biological functions. However, low metabolic stability and the lack of oral availability of most peptides is a certain limitation. Whereas metabolic instability may be often overcome by development of small cyclic peptides containing d-amino acids, the very low oral availability of most peptides is a serious limitation for some medicinal applications. The situation is complicated because a twofold optimization – biological activity and oral availability – is required to overcome this problem. Moreover, most simple “rules” for achieving oral availability are not general and are applicable only to limited cases. Many structural modifications for increasing biological activities and metabolic stabilities of cyclic peptides have been described, of which N-alkylation is probably the most common. This mini-review focuses on the effects of N-methylation of cyclic peptides in strategies to optimize bioavailabilities. 相似文献
104.
Xiao-Xue Wang De-Hui Guan Cheng-Lin Miao Jia-Xin Li Jian-You Li Xin-Yuan Yuan Xin-Yue Ma Ji-Jing Xu 《Liver Transplantation》2024,14(5):2303829
Rechargeable lithium–oxygen batteries (LOBs) are considered to be one of the most promising energy storage systems. However, the use of reactive lithium (Li) metal and the formation of Li dendrites during battery operation would lead to serious safety concerns, especially when flammable liquid electrolytes are utilized. Herein, superior metal–organic framework (MOF) glass-based solid-state electrolytes (SSEs) is developed for stable all-solid-state LOBs (SSLOBs). These non-flammable and boundary-free MOF glass SSEs are capable of suppressing the dendrite growth and exhibiting long-term Li stripping/plating stability, contributing to superior Li+ conductivity (5 × 10−4 S cm−1 at 20 °C), high Li+ transference number (0.86), and good electrochemical stability. It is discovered that discharge product deposition behavior in the solid-solid interface can be well regulated by the ion/electron mixed conducted cathode fabricated with MOF glass SSEs and electronic conductive polymers. As a result, the SSLOBs can be stably recharged for 400 cycles with a low polarization gap and deliver a high capacity of 13552 mAh g−1. The development of this proposed MOF glass displays great application potential in energy storage systems with good safety and high energy density. 相似文献
105.
Chen Lu Zhongti Sun Lianghao Yu Xueyu Lian Yuyang Yi Jie Li Zhongfan Liu Shixue Dou Jingyu Sun 《Liver Transplantation》2020,10(28)
Carbonaceous materials have emerged as promising anode candidates for potassium‐ion batteries (PIBs) due to overwhelming advantages including cost‐effectiveness and wide availability of materials. However, further development in this realm is handicapped by the deficiency in their in‐target and large‐scale synthesis, as well as their low specific capacity and huge volume expansion. Herein the precise and scalable synthesis of N/S dual‐doped graphitic hollow architectures (NSG) via direct plasma enhanced chemical vapor deposition is reported. Thus‐fabricated NSG affording uniform nitrogen/sulfur co‐doping, possesses ample potassiophilic surface moieties, effective electron/ion‐transport pathways, and high structural stability, which bestow it with high rate capability (≈100 mAh g?1 at 20 A g?1) and a prolonged cycle life (a capacity retention rate of 90.2% at 5 A g?1 after 5000 cycles), important steps toward high‐performance K‐ion storage. The enhanced kinetics of the NSG anode are systematically probed by theoretical simulations combined with operando Raman spectroscopy, ex situ X‐ray photoelectron spectroscopy, and galvanostatic intermittent titration technique measurements. In further contexts, printed NSG electrodes with tunable mass loading (1.84, 3.64, and 5.65 mg cm?2) are realized to showcase high areal capacities. This study demonstrates the construction of a printable carbon‐based PIB anode, that holds great promise for next‐generation grid‐scale PIB applications. 相似文献
106.
107.
Annelie Eklund Sarron Randall‐Demllo Sergey Shabala Nuri Guven Anthony L Cook Rajaraman D Eri 《Cell biochemistry and function》2013,31(7):603-611
Endoplasmic reticulum (ER) stress and oxidative stress have recently been linked to the pathogenesis of inflammatory bowel diseases. Under physiological conditions, intestinal epithelial cells are exposed to ER and oxidative stress affecting the cellular ionic homeostasis. However, these altered ion flux ‘signatures’ during these stress conditions are poorly characterized. We investigated the kinetics of K+, Ca2+ and H+ ion fluxes during ER and oxidative stress in a colonic epithelial cell line LS174T using a non‐invasive microelectrode ion flux estimation technique. ER and oxidative stress were induced by cell exposure to tunicamycin (TM) and copper ascorbate (CuAsc), respectively, from 1 to 24 h. Dramatic K+ efflux was observed following acute ER stress with peak K+ efflux being ?30·6 and ?138·7 nmolm?2 s?1 for 10 and 50 µg ml?1, respectively (p < 0·01). TM‐dependent Ca2+ uptake was more prolonged with peak values of 0·85 and 2·68 nmol m?2 s?1 for 10 and 50 µg ml?1 TM, respectively (p < 0·02). Ion homeostasis was also affected by the duration of ER stress. Increased duration of TM treatment from 0 to 18 h led to increases in both K+ efflux and Ca2+ uptake. While K+ changes were significantly higher at each time point tested, Ca2+ uptake was significantly higher only after prolonged treatment (18 h). CuAsc also led to an increased K+ efflux and Ca2+ uptake. Functional assays to investigate the effect of inhibiting K+ efflux with tetraethylammonium resulted in increased cell viability. We conclude that ER/oxidative stress in colonic epithelial cells cause dramatic K+, Ca2+ and H+ ion flux changes, which may predispose this lineage to poor stress recovery reminiscent of that seen in inflammatory bowel diseases. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
108.
Rytis Prekeris Judith Klumperman Yu A. Chen Richard H. Scheller 《The Journal of cell biology》1998,143(4):957-971
Endocytosis-mediated recycling of plasma membrane is a critical vesicle trafficking step important in diverse biological processes. The membrane trafficking decisions and sorting events take place in a series of heterogeneous and highly dynamic organelles, the endosomes. Syntaxin 13, a recently discovered member of the syntaxin family, has been suggested to play a role in mediating endosomal trafficking. To better understand the function of syntaxin 13 we examined its intracellular distribution in nonpolarized cells. By confocal immunofluorescence and electron microscopy, syntaxin 13 is primarily found in tubular early and recycling endosomes, where it colocalizes with transferrin receptor. Additional labeling is also present in endosomal vacuoles, where it is often found in clathrin-coated membrane areas. Furthermore, anti-syntaxin 13 antibody inhibits transferrin receptor recycling in permeabilized PC12 cells. Immunoprecipitation of syntaxin 13 revealed that, in Triton X-100 extracts, syntaxin 13 is present in a complex(es) comprised of βSNAP, VAMP 2/3, and SNAP-25. This complex(es) binds exogenously added αSNAP and NSF and dissociates in the presence of ATP, but not ATPγS. These results support a role for syntaxin 13 in membrane fusion events during the recycling of plasma membrane proteins. 相似文献
109.
Synaptosomes were isolated from cerebrums of rats fed standard (20% protein) or protein-free diets for 30 days. Arrhenius plots of their (Na+/K+)ATPase activities revealed a transition temperature of 25.5°C for control rats and 23.4°C for rats on protein-free diet, indicating that the latter increases synaptosomal membrane fluidity. The only change observed in the composition of the synaptosomal membranes was a 26% decrease of sialic acid. In synaptosomes from rats on protein-free diet the uptake of tyrosine was slightly reduced while that of glutamate was not affected. However, the exit of glutamate was reduced. 相似文献
110.
l-Phenylalanyl-l-Glutamate-Stimulated, Chloride-Dependent Glutamate Binding Represents Glutamate Sequestration Mediated by an Exchange System 总被引:1,自引:6,他引:1
Markus Kessler Gene Petersen Hai Minh Vu Michel Baudry Gary Lynch 《Journal of neurochemistry》1987,48(4):1191-1200
Stimulation of glutamate binding by the dipeptide L-phenylalanyl-L-glutamate (Phe-Glu) was inhibited by the peptidase inhibitor bestatin, suggesting that the stimulation was caused by glutamate liberated from the dipeptide and not by the dipeptide itself. It further suggests that this form of glutamate binding should be reinterpreted as glutamate sequestration and that stimulation of binding both by dipeptides and after preincubation with high concentrations of glutamate is likely to be due to counterflow accumulation. Several other criteria indicate that most of glutamate binding stimulated by chloride represents glutamate sequestration: Binding is reduced when the osmolarity of the incubation medium is increased, when membranes incubated with [3H]glutamate are lysed before filtration, and when membranes are made permeable by transient exposure to saponin. Moreover, dissociation of bound glutamate after a 100-fold dilution of the incubation medium is accelerated about 50 times by the addition of glutamate to the dilution medium. This result would be anomalous if glutamate were bound to a receptor site; it suggests instead that glutamate is transported in and out of membrane vesicles by a transport system that preferentially mediates exchange between internal and external glutamate. Glutamate binding contains a component of glutamate sequestration even when measured in the absence of chloride. Sequestration is adequately abolished only after treating membranes with detergents; even extensive lysis, sonication, and freezing/thawing may be insufficient. 相似文献