首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6519篇
  免费   995篇
  国内免费   1219篇
  2024年   67篇
  2023年   250篇
  2022年   286篇
  2021年   367篇
  2020年   412篇
  2019年   495篇
  2018年   338篇
  2017年   353篇
  2016年   356篇
  2015年   416篇
  2014年   390篇
  2013年   509篇
  2012年   302篇
  2011年   354篇
  2010年   324篇
  2009年   358篇
  2008年   367篇
  2007年   336篇
  2006年   382篇
  2005年   354篇
  2004年   255篇
  2003年   246篇
  2002年   205篇
  2001年   133篇
  2000年   100篇
  1999年   102篇
  1998年   94篇
  1997年   64篇
  1996年   67篇
  1995年   54篇
  1994年   38篇
  1993年   46篇
  1992年   37篇
  1991年   26篇
  1990年   25篇
  1989年   21篇
  1988年   22篇
  1987年   18篇
  1986年   17篇
  1985年   15篇
  1984年   25篇
  1983年   16篇
  1982年   22篇
  1981年   18篇
  1980年   11篇
  1979年   11篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1973年   5篇
排序方式: 共有8733条查询结果,搜索用时 15 毫秒
31.
The three-dimensional structure of a modified human lysozyme (HL), Glu 53 HL, in which Asp 53 was replaced by Glu, has been determined at 1.77 A resolution by X-ray analysis. The backbone structure of Glu 53 HL is essentially the same as the structure of wild-type HL. The root mean square difference for the superposition of equivalent C alpha atoms is 0.141 A. Except for the Glu 53 residue, the structure of the active site region is largely conserved between Glu 53 HL and wild-type HL. However, the hydrogen bond network differs because of the small shift or rotation of side chain groups. The carboxyl group of Glu 53 points to the carboxyl group of Glu 35 with a distance of 4.7 A between the nearest carboxyl oxygen atoms. A water molecule links these carboxyl groups by a hydrogen bond bridge. The active site structure explains well the fact that the binding ability for substrates does not significantly differ between Glu 53 HL and wild-type HL. On the other hand, the positional and orientational change of the carboxyl group of the residue 53 caused by the mutation is considered to be responsible for the low catalytic activity (ca. 1%) of Glu 53 HL. The requirement of precise positioning for the carboxyl group suggests the possibility that the Glu 53 residue contributes more than a simple electrostatic stabilization of the intermediate in the catalysis reaction.  相似文献   
32.
We report the X-ray analysis at 2.0 A resolution for crystals of the aspartic proteinase endothiapepsin (EC 3.4.23.6) complexed with a potent difluorostatone-containing tripeptide renin inhibitor (CP-81,282). The scissile bond surrogate, an electrophilic ketone, is hydrated in the complex. The pro-(R) (statine-like) hydroxyl of the tetrahedral carbonyl hydrate is hydrogen-bonded to both active-site aspartates 32 and 215 in the position occupied by a water in the native enzyme. The second hydroxyl oxygen of the hydrate is hydrogen-bonded only to the outer oxygen of Asp 32. These experimental data provide a basis for a model of the tetrahedral intermediate in aspartic proteinase-mediated cleavage of the amide bond. This indicates a mechanism in which Asp 32 is the proton donor and Asp 215 carboxylate polarizes a bound water for nucleophilic attack. The mechanism involves a carboxylate (Asp 32) that is stabilized by extensive hydrogen bonding, rather than an oxyanion derivative of the peptide as in serine proteinase catalysis.  相似文献   
33.
Summary The nephridial nerve cells of the leech, Hirudo medicinalis, 34 sensory cells, each associated with one nephridium, are sensitive to changes in extracellular Cl- concentration, an important factor in ion homeostasis. Using single-electrode current- and voltage clamp and ion substitution techniques, the specificity and mechanism of Cl- sensitivity of the nephridial nerve cell was studied in isolated preparations. Increase of the normally low external Cl- concentration leads to immediate and sustained hyperpolarization, decrease of the frequency of bursts and decrease of membrane conductance. The response is halogen specific: Cl- can be replaced by Br, but not by organic mono- or divalent anions or inorganic divalent anions.At physiological Cl- concentrations (36mM extra-cellular Cl-), the nephridial nerve cell has a high resting conductance for Cl- and the membrane potential is governed by Cl-. In high extracellular Cl- concentrations (110–130 mM), membrane conductance is low, most likely due to the gating off of Cl- channels. Under these conditions, membrane potential is dominated by the K+ distribution and the nephridial nerve cell hyperpolarizes towards EK.Abbreviations NNC nephridial nerve cell - V m membrane potential - E Cl(k) equilibrium potential for Cl (K) - IV-curve current-voltage relationship  相似文献   
34.
Summary The voltage-dependence of channel formation by alamethicin and its natural analogues can be described by a dipole flip-flop gating model, based on electric field-induced transbilayer orientational movements of single molecules. These field-induced changes in orientation result from the large permanent dipole moment of alamethicin, which adopts -helical conformation in hydrophobic medium. It was, therefore, supposed that the only structural requirement for voltage-dependent formation of alamethicin-type channels might be a rigid lipophilic helical segment of minimum length.In order to test this hypothesis we synthesized a family of lipophilic polypeptides—Boc-(Ala-Aib-Ala-Aib-Ala) n -OMe,n=1–4—which adopt -helical conformation forn=2–4 and studied their interaction with planar lipid bilayers. Surprisingly, despite their large difference in chain length, all four polypeptides showed qualitatively similar behavior. At low field strength of the membrane electric field these polypeptides induce a significant, almost voltage-independent increase of the bilayer conductivity. At high field strength, however, a strongly voltage-dependent conductance increase occurs similar to that observed with alamethicin. It results from the opening of a multitude of ion translocating channels within the membrane phase.The steady-state voltage-dependent conductance depends on the 8th–9th power of polypeptide concentration and involves the transfer of 4–5 formal elementary charges. From the power dependences on polypeptide concentration and applied voltage of the time constants in voltage-jump current-relaxation experiments, it is concluded that channels could be formed from preexisting dodecamer aggregates by the simultaneous reorientation of six formal elementary charges. Channels exhibit large conductance values of several nS, which become larger towards shorter polypeptide chain length. A mean channel diameter of 19 Å is estimated corresponding roughly to the lumen diameter of a barrel comprised of 10 -helical staves. Similar to experiments with the N-terminal Boc-derivative of alamethicin we did not observe the burst sequence of nonintegral conductance steps typical of natural (N-terminal Ac-Aib)-alamethicin. Saturation in current/voltage curves as well as current inactivation in voltage-jump current-relaxation experiments are found. This may be understood by assuming that channels are generated as dodecamers but, while reaching the steady state, reduce their size to that of an octamer or nonamer. We conclude that the overall behavior of these synthetic polypeptides is very similar to that of alamethicin. They exhibit the same concentration and voltage-dependences but lack the stabilizing principle of resolved channel states characteristic of alamethicin.  相似文献   
35.
Summary Six independently isolated mutants of Chlamydomonas reinhardtii that require elevated CO2 for photoautotrophic growth were tested by complementation analysis. These mutants are likely to be defective in some aspect of the algal concentrating mechanism for inorganic carbon as they exhibit CO2 fixation and inorganic carbon accumulation properties different from the wild-type. Four of the six mutants defined a single complementation group and appear to be defective in an intracellular carbonic anhydrase. The other two mutations represent two additional complementation groups.Abbreviations HS high salt medium which has 13 mM phosphate at pH 6.8 - HSA high salt plus 36 mM acetate medium - YA high salt medium with 4 g yeast extract per L and 36mM acetate - Arg arginine - cia- CO2 accumulation mutants that cannot grow on low CO2 - Ci inorganic carbon (CO2+HCO - 3 ) - CA carbonic anhydrase - mt mating type Supported in part by the McKnight Foundation and by NSF grant PCM 8005917 and published as journal article 11924 from the Michigan State Agriculatural Experiment Station  相似文献   
36.
Summary A voltage-dependent anion-selective channel, VDAC, is found in outer mitochondrial membranes. VDAC's conductance is known to decrease as the transmembrane voltage is increased in either the positive or negative direction. Charged groups on the channel may be responsible for this voltage dependence by allowing the channel to respond to an applied electric field. If so, then neutralization of these charges would eliminate the voltage dependence. Channels in planar lipid bilayers which behaved normally at pH 6 lost much of their voltage dependence at high pH. Raising the pH reduced the steepness of the voltage dependence and raised the voltage needed to close half the channels. In contrast, the energy difference between the open and closed state in the absence of a field was changed very little by the elevated pH. The groups being titrated had an apparent pK of 10.6. From the pK and chemical modification, lysine epsilon amino groups are the most likely candidates responsible for VDAC's ability to respond to an applied electric field.  相似文献   
37.
The X-ray structure determination of yeast phosphoglycerate kinase and subsequent substrate binding studies have helped to define the binding sites for the triose and nucleoside phosphate substrates. This communication deals with one feature of the binding site—the location of an aspartic acid residue close to the phosphoryl binding site of the nucleotide substrate—and relates this and other structural features of the active site to the properties of this enzyme as deduced from nuclear magnetic resonance studies.  相似文献   
38.
Summary Autophagosome formation in rat and gerbil pinealocytes is described. It starts with the setting up of a tubular acid phosphatase-rich cisterna which gradually wraps around cytoplasmic areas to be catabolized. In light of obtained findings, it seems that the autophagosome formation in pinealocytes is a type of lysosome wrapping mechanism.  相似文献   
39.
Germination of freshly harvested seeds of a non-dormant (ND) line (Stonehouse 319) of wild oats ( Avena fatua L.) was inhibited by incubation of the seeds at relatively high temperatures of 25 and 30°C. The germination inhibition in these seeds appeared to be a case of thermo-inhibition which was the direct effect of hightemperature treatment (HIT), since it did not persist after transferring the seeds to an optimum germination temperature of 20°C. Even a prolonged HTT of 30°C for over 5 weeks did not prevent germination of about 80% of the seeds transferred to 20°C. However, in a significant proportion of the seeds, thermo-dormancy was induced by 10 days of HTT at 30°C if the seeds were then incubated at sub-optimal temperatures of 5 to 15°C. This thermo-dormancy would appear to be 'restrictive' in form, since its expression was restricted to very specific conditions. Relatively low inclubation temperaturs of 5 and 10°C markedly slowed germination whether HTT was applied or not. The results suggest that thermo-inhibition and thermo-dormancy, induced during seasonal temperature fluctuations, may provide a survival mechanism for seeds of such ND lines as Stonehouse 319.  相似文献   
40.
The reactions of singlet oxygen (1O2) with cis and trans butenes-1,1,1-d3, at—80°C in Freon-11, show a product isotope effect (kH/kD) of 1.38 and 1.25 respectively. Isomerization of the starting materials or formation of dioxetanes were not observed during the course of the photooxygenation. Together with the isotope effects on the reactions of tetramethylethylene-d6 isomers with singlet oxygen, these results require the reversible formation of a perepoxide or charge transfer intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号