首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   35篇
  国内免费   6篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   13篇
  2020年   10篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   13篇
  2015年   17篇
  2014年   12篇
  2013年   20篇
  2012年   12篇
  2011年   14篇
  2010年   7篇
  2009年   17篇
  2008年   22篇
  2007年   18篇
  2006年   21篇
  2005年   11篇
  2004年   15篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
排序方式: 共有344条查询结果,搜索用时 46 毫秒
71.
The biogeography of naturalization in alien plants   总被引:9,自引:0,他引:9  
Aim  This paper reviews the main geographical determinants of naturalization in plants.
Location  Global.
Methods  Comparative studies of large data sets of alien floras are the main source of information on global patterns of naturalization.
Results  Temperate mainland regions are more invaded than tropical mainland regions but there seems to be no difference in invasibility of temperate and tropical islands. Islands are more invaded than the mainland. The number of naturalized species in temperate regions decreases with latitude and their geographical ranges increase with latitude. The number of naturalized species on islands increases with temperature. Naturalized species contribute to floristic homogenization, but the phenomenon is scale-dependent.
Main conclusions  Some robust patterns are evident from currently available data, but further research is needed on several aspects to advance our understanding of the biogeography of naturalization of alien plants. For example, measures of propagule pressure are needed to determine the invasibility of communities/ecosystems/regions. The patterns discussed in this paper are derived largely from numbers and proportions of naturalized species, and little is known about the proportion of introduced species that become naturalized. Further insights on naturalization rates, i.e. the proportion of aliens that successfully naturalize within regions, and on geographical and other determinants of its variation would provide us with better understanding of the invasion process. Comparative studies, and resulting generalizations, are almost exclusively based on numbers of species, but alien species differ in their impact on native biodiversity and ecosystem processes.  相似文献   
72.
外来种互花米草入侵模式与爆发机制   总被引:32,自引:5,他引:32  
互花米草(Spartina alterniflora Loisel)因其促淤造陆和消浪护堤作用显著而被许多国家引种,如今却在侵入地快速蔓延并呈现爆发趋势,对生态系统造成了极大危害,被认为是研究生物入侵生态学和遗传学的模式植物。从种群的入侵力、生态系统可入侵性和入侵通道3个方面探讨互花米草的爆发机制,研究结果表明高遗传分化和基因渗入能力是互花米草爆发的遗传基础,对逆境的高抗性和强竞争力是其快速扩张的保障,而高繁殖系数是互花米草爆发的源泉。我国互花米草种群的早期扩散人为影响超过了自然过程,快速扩张呈现出点源扩散和多点爆发的特点,从而为其种群控制带来困难,同时种子的跳跃式和连续式扩散在互花米草种群维持、更新和爆发中有重要作用,强有力的克隆生长能力也为互花米草种群的连续扩张提供了保障。现阶段要完全控制和根除互花米草是不实际的,但在及时预测预警的基础上,应用成本一效益分析方法,采取有序控制和综合开发利用的策略,仍可望妥善解决互花米草入侵所带来的负面效应。  相似文献   
73.
研究外来植物不同程度入侵对区域群落结构和植物群落物种多样性的影响对评价其对生态系统的危害具有重要意义。以入侵植物以意大利苍耳(Xanthium italicum)为主要研究对象,选择意大利苍耳危害较明显且分布面积较大的中国新疆乌鲁木齐市米东区为研究区域进行植物样方调查,以意大利苍耳和其共生的本地植物为切入点,以物种多样性指数、群落稳定性、群落可入侵性、影响程度指数、入侵植物的竞争优势和入侵强度来探究不同入侵程度下的本地植物群落物种多样性和群落稳定性的变化。结果表明:(1)与未入侵地相比,意大利苍耳轻度入侵显著增加了本地植物群落的物种多样性(P < 0.05),而重度入侵显著降低了本地植物群落的物种多样性(P < 0.05)。(2)在意大利苍耳入侵的群落中,群落稳定性由轻度入侵水平到重度入侵水平降低了25%,而群落可入侵性、意大利苍耳的竞争优势指数和入侵强度指数分别增加了77%、79%和83%。(3)在轻度入侵水平下,意大利苍耳对本植物群落物种多样性、群落稳定性和群落物种数的影响程度指数 < 0,产生了积极影响;相反,在轻中度和重度入侵水平下意大利苍耳对本植物群落物种多样性、群落稳定性和群落物种数的影响程度指数 > 0,产生了负面影响。(4)本地植物群落多样性与群落稳定性均呈正相关,但与群落可入侵性呈负相关(P < 0.05)。(5)Shannon-Wiener指数对群落的稳定性的直接通经系数最大,为0.828;Simpson''s指数对群落可入侵性的直接通经系数最大,为0.932。由此可见,意大利苍耳在中度和重度入侵对植物群落结构产生巨大影响,而作为"一带一路"的核心和枢纽地带的新疆,将会对其脆弱的生态系统和土著物种的多样性造成不可估量的影响。应在入侵初期对其进行控制与铲除,防止意大利苍耳等有害外来入侵种的入侵和进一步扩散与蔓延。  相似文献   
74.
The geographic ranges of taxa change in response to environmental conditions. Yet whether rates of range movement (biotic velocities) are phylogenetically conserved is not well known. Phylogenetic conservatism of biotic velocities could reflect similarities among related lineages in climatic tolerances and dispersal‐associated traits. We assess whether late Quaternary biotic velocities were phylogenetically conserved and whether they correlate with climatic tolerances and dispersal‐associated traits. We used phylogenetic regression and nonparametric correlation to evaluate associations between biotic velocities, dispersal‐associated traits, and climatic tolerances for 28 woody plant genera and subgenera in North America. The velocities with which woody plant taxa shifted their core geographic range limits were positively correlated from time step to time step between 16 and 7 ka. The strength of this correlation weakened after 7 ka as the pace of climate change slowed. Dispersal‐associated traits and climatic tolerances were not associated with biotic velocities. Although the biotic velocities of some genera were consistently fast and others consistently slow, biotic velocities were not phylogenetically conserved. The rapid late Quaternary range shifts of plants lacking traits that facilitate frequent long‐distance dispersal has long been noted (i.e., Reid's Paradox). Our results are consistent with this paradox and show that it remains robust when phylogenetic information is taken into account. The lack of association between biotic velocities, dispersal‐associated traits, and climatic tolerances may reflect several, nonmutually exclusive processes, including rare long‐distance dispersal, biotic interactions, and cryptic refugia. Because late Quaternary biotic velocities were decoupled from dispersal‐associated traits, trait data for genera and subgenera cannot be used to predict longer‐term (millennial‐scale) floristic responses to climate change.  相似文献   
75.
To answer the long‐standing question if we can predict plant invader success based on characteristics of the environment (invasibility) or the invasive species (invasiveness), or the combination of both, there is a need for detailed observational studies in which habitat properties, non‐native plant traits, and the resulting invader success are locally measured. In this study, we assess the interaction of gradients in the environmental and trait space on non‐native species fitness, expressed as seed production, for a set of 10 invasive and noninvasive non‐native species along a wide range of invaded sites in Flanders. In our multidimensional approach, most of the single environmental gradients (temperature, light availability, native plant species diversity, and soil fertility) and sets of non‐native plant traits (plant size, photosynthesis, and foliar chemical attributes) related positively with invader seed production. Yet correlation with seed production was much stronger when several environmental gradients were assessed in interaction, and even more so when we combined plant traits and habitat properties. The latter increased explanatory power of the models on average by 25% for invasive and by 7% for noninvasive species. Additionally, we report a 70‐fold higher seed production in invasive than in noninvasive species and fundamentally different correlations of seed production with plant traits and habitat properties in noninvasive versus invasive species. We conclude that locally measured traits and properties deserve much more attention than they currently get in invasion literature and thus encourage further studies combining this level of detail with the generality of a multiregion and multispecies approach across different stages of invasion.  相似文献   
76.
The body-mass-corrected rate of basal metabolism in mammals is found to be negatively correlated with genome size, which is possibly linked to average cell size. The correlation, already significant at the species level (rsp = –0.61, P < 0.0002), gradually strengthens as mean values for higher taxonomic levels (genera, families, and orders) are substituted in place of the species points (rgen = –0.65, P < 0.0002; rfam = –0.71, P < 0.0004; rord = –0.81, P < 0.008). This finding suggests that a sizeable part of the mammalian (above 25% of human) genome can be used for evolutionary adjustment of metabolic rate resulting from nucleotypic effect independently of body size. The total variance of mammalian genome-size values is found to be divided into two parts: within genera (43%) and taxonomic levels higher than order (57%), with no tangible variance being added between these taxonomic levels; whereas the body-mass-corrected rate of basal metabolism varies mainly at family (42%) and order (53%) levels. The only order for which there seems to be a necessary minimum of data for intraorder analysis (rodents) shows a not statistically significant correlation at the species level (rsp = –0.47; P < 0.09), significant at the genus level (rgen = –0.74; P < 0.04), and very high at the family level (rfam = –0.98; P < 0.03). The concept of ultimate (distant) characters consolidation is proposed. In birds, with average genome sizes 40% of those of mammals, and similarly narrower ranges both of genome sizes and of body-mass-corrected metabolic rates, the correlation was not significant.  相似文献   
77.
Opening of a non-specific, high conductance permeability transition pore or megachannel in the inner mitochondrial membrane causes onset of the mitochondrial permeability transition, which is characterized by mitochondrial swelling, depolarization and uncoupling. Inducers of the permeability transition include Ca2+, oxidant stress and a permissive pH greater than 7.0. Blockers include cyclosporin A, trifluoperazine and pH < 7. Using laser scanning confocal microscopy, we developed techniques to visualize onset of the mitochondrial permeability transition in situ in living cells. In untreated cells, the permeability transition pore is continuously closed and does not 'flicker' open. By contrast, the pore opens in liver and heart cells after exposure to oxidant chemicals, calcium ionophore, hypoxia and ischemia/reperfusion, causing mitochondrial uncoupling and aggravation of ATP depletion. In injury to hepatocytes from tert-butylhydroperoxide, an analog of lipid hydroperoxides generated during oxidative stress, onset of the mitochondrial permeability transition is preceded by oxidation of mitochondrial pyridine nucleotides, mitochondrial generation of oxygen radicals and an increase of mitochondrial Ca2+, all inducers of the mitochondrial permeability transition. In ischemia, the acidosis of anaerobic metabolism protects strongly against cell death. During reperfusion, recovery of pH to normal levels is a stress that actually precipitates cell killing. Onset of the mitochondrial permeability transition may be responsible, in part, for this pH-dependent injury, or pH paradox. The mitochondrial permeability transition may also be responsible for a variety of pathological phenomena. In particular, the mitochondrial permeability transition may underlie Reye's syndrome and Reye's-like drug toxicities. In conclusion, multiple mechanisms contribute to cell injury after hypoxia, ischemia/reperfusion and toxic chemicals, but a common final pathway leading to acute cellular nec rosis may be ATP depletion after mitochondrial failure. One important mechanism causing mitochondrial failure is the mitochondrial permeability transition, which both uncouples oxidative phosphorylation and accelerates ATP hydrolysis. Interventions that block this pH-dependent phenomenon protect against onset of cell death. (Mol Cell Biochem 174: 159–165, 1997)  相似文献   
78.
79.
Arbuscular mycorrhizal fungi (AMF) can transfer nitrogen (N) to host plants, but the ecological relevance is debated, as total plant N and biomass do not generally increase. The extent to which the symbiosis is mutually beneficial is thought to rely on the stoichiometry of N, phosphorus (P) and carbon (C) availability. While inorganic N fertilization has been shown to elicit strong mutualism, characterized by improved plant and fungal growth and mineral nutrition, similar responses following organic N addition are lacking. Using a compartmented microcosm experiment, we determined the significance to a mycorrhizal plant of placing a 15N‐labelled, nitrogen‐rich patch of organic matter in a compartment to which only AMF hyphae had access. Control microcosms denied AMF hyphal access to the patch compartment. When permitted access to the patch compartment, the fungus proliferated extensively in the patch and transferred substantial quantities of N to the plant. Moreover, our data demonstrate that allowing hyphal access to an organic matter patch enhanced total plant N and P contents, with a simultaneous and substantial increase in plant biomass. Furthermore, we demonstrate that organic matter fertilization of arbuscular mycorrhizal plants can foster a mutually beneficial symbiosis based on nitrogen transfer, a phenomenon previously thought irrelevant.  相似文献   
80.
Biological invasions depend in part on the resistance of native communities. Meta‐analyses of terrestrial experiments demonstrate that native primary producers and herbivores generally resist invasions of primary producers, and that resistance through competition strengthens with native producer diversity. To test the generality of these findings, we conducted a meta‐analysis of marine experiments. We found that native marine producers generally failed to resist producer invasions through competition unless the native community was diverse, and this diversity effect was weaker in marine than in terrestrial systems. In contrast, native consumers equally resisted invasive producers in both ecosystems. Most marine experiments, however, tested invasive consumers and these invasions were resisted more strongly than were producer invasions. Given these differences between ecosystems and between marine trophic levels, we used a model‐selection approach to assess if factors other than the resistance mechanism (i.e. competition vs. consumption) are more important for predicting marine biotic resistance. These results suggest that understanding marine biotic resistance depends on latitude, habitat and invader taxon, in addition to distinguishing between competition with and consumption by native species. By examining biotic resistance within and across ecosystems, our work provides a more complete understanding of the factors that underlie biological invasions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号