首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   303篇
  免费   35篇
  国内免费   6篇
  2024年   1篇
  2023年   3篇
  2022年   1篇
  2021年   13篇
  2020年   10篇
  2019年   13篇
  2018年   15篇
  2017年   13篇
  2016年   13篇
  2015年   17篇
  2014年   12篇
  2013年   20篇
  2012年   12篇
  2011年   14篇
  2010年   7篇
  2009年   17篇
  2008年   22篇
  2007年   18篇
  2006年   21篇
  2005年   11篇
  2004年   15篇
  2003年   12篇
  2002年   11篇
  2001年   9篇
  2000年   5篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1985年   2篇
  1984年   3篇
  1981年   1篇
排序方式: 共有344条查询结果,搜索用时 15 毫秒
141.
Aim To examine native‐exotic species richness relationships across spatial scales and corresponding biotic homogenization in wetland plant communities. Location Illinois, USA. Methods We analysed the native‐exotic species richness relationship for vascular plants at three spatial scales (small, 0.25 m2 of sample area; medium, 1 m2 of sample area; large, 5 m2 of sample area) in 103 wetlands across Illinois. At each scale, Spearman’s correlation coefficient between native and exotic richness was calculated. We also investigated the potential for biotic homogenization by comparing all species surveyed in a wetland community (from the large sample area) with the species composition in all other wetlands using paired comparisons of their Jaccard’s and Simpson’s similarity indices. Results At large and medium scales, native richness was positively correlated with exotic richness, with the strength of the correlation decreasing from the large to the medium scale; at the smallest scale, the native‐exotic richness correlation was negative. The average value for homogenization indices was 0.096 and 0.168, using Jaccard’s and Simpson’s indices, respectively, indicating that these wetland plant communities have been homogenized because of invasion by exotic species. Main Conclusions Our study demonstrated a clear shift from a positive to a negative native‐exotic species richness relationship from larger to smaller spatial scales. The negative native‐exotic richness relationship that we found is suggested to result from direct biotic interactions (competitive exclusion) between native and exotic species, whereas positive correlations likely reflect the more prominent influence of habitat heterogeneity on richness at larger scales. Our finding of homogenization at the community level extends conclusions from previous studies having found this pattern at much larger spatial scales. Furthermore, these results suggest that even while exhibiting a positive native‐exotic richness relationship, community level biotas can/are still being homogenized because of exotic species invasion.  相似文献   
142.
Concerns have been raised that posterior probabilities on phylogenetic trees can be unreliable when the true tree is unresolved or has very short internal branches, because existing methods for Bayesian phylogenetic analysis do not explicitly evaluate unresolved trees. Two recent papers have proposed that evaluating only resolved trees results in a "star tree paradox": when the true tree is unresolved or close to it, posterior probabilities were predicted to become increasingly unpredictable as sequence length grows, resulting in inflated confidence in one resolved tree or another and an increasing risk of false-positive inferences. Here we show that this is not the case; existing Bayesian methods do not lead to an inflation of statistical confidence, provided the evolutionary model is correct and uninformative priors are assumed. Posterior probabilities do not become increasingly unpredictable with increasing sequence length, and they exhibit conservative type I error rates, leading to a low rate of false-positive inferences. With infinite data, posterior probabilities give equal support for all resolved trees, and the rate of false inferences falls to zero. We conclude that there is no star tree paradox caused by not sampling unresolved trees.  相似文献   
143.
At large spatial scales, exotic and native plant diversity exhibit a strong positive relationship. This may occur because exotic and native species respond similarly to processes that influence diversity over large geographical areas. To test this hypothesis, we compared exotic and native species–area relationships within six North American ecoregions. We predicted and found that within ecoregions the ratio of exotic to native species richness remains constant with increasing area. Furthermore, we predicted that areas with more native species than predicted by the species–area relationship would have proportionally more exotics as well. We did find that these exotic and native deviations were highly correlated, but areas that were good (or bad) for native plants were even better (or worse) for exotics. Similar processes appear to influence exotic and native plant diversity but the degree of this influence may differ with site quality.  相似文献   
144.
Relatively little experimental evidence is available regarding how ecological resistance and propagule density interact in their effects on the establishment of invasive exotic species. We examined the independent and interactive effects of neighbour cover (biotic resistance), winter vs. spring water addition (abiotic resistance) and seed density on the invasion of the European perennial grass Holcus lanatus into a California coastal grassland dominated by exotic annual grasses. We found that decreased competition from resident exotic grasses had no effect. In contrast, increased late-season water availability eroded the abiotic resistance offered by naturally dry conditions, facilitating invasion. Finally, watering treatment and seed density interacted strongly in determining seedling survival: while seedling mortality was close to 100% in ambient and winter water addition plots, survivor numbers increased with seed density in spring-watered plots. Thus, decreased abiotic resistance can amplify the effect of increased propagule density on seedling establishment, thereby increasing the likelihood of invasion.  相似文献   
145.
Alice C. Harris 《Morphology》2006,16(2):205-229
This paper addresses the issue of stranded modifiers and null heads through two otherwise unrelated constructions in Georgian. In each construction, a word in the oblique form modifies part of the complex word following it. It is shown that null modifiers in Georgian have a form different from that of the modifiers in the constructions at issue, and the latter cannot have null heads. However, Baker’s [Baker, M. C. (1988). Incorporation: A theory of grammatical function changing. Chicago: University of Chicago Press.] alternative approach is not easily compatible with the derivational morphology of these examples. I propose an analysis of external modifiers in terms of Beard [Beard, R. (1991). Natural Language and Linguistic Theory, 9, 195–229.], which addresses other bracketing paradoxes by permitting “the semantic features of an attribute [to] subjoin with one and only one semantic feature of its head” (1991: 208). In this way I suggest a unified analysis of noun incorporation and derived structures, drawing on a mechanism that must be included in the grammar for non-derived words as well.  相似文献   
146.
Abstract

We show that loops of close contacts involving hydrophobic residues are important in protein folding. Contrary to Berezovsky and Trifonov (J. Biomol. Struct. Dyn. 20, 5–6, 2002) the loops important in protein folding usually are much larger in size than 23–31 residues, being instead comparable to the size of the protein for single domain proteins. Additionally what is important are not single loop contacts, but a highly interconnected network of such loop contacts, which provides extra stability to a protein fold and which leads to their conservation in evolution.  相似文献   
147.
Phytometers of five C3 and five C4 species were transplanted into three different grasslands to study the effects of extreme climatic events on community invasibility and competition. Single extreme heating (eight hours at 52.5 °C) and rainfall (the equivalent of 100 mm) events in factorial combinations were superimposed on the grassland communities. A novel technique involving portable computer‐controlled chambers was used to create the heating events. In order to generate predictions of response to the extreme climatic events, the 10 phytometer species were categorized on the basis of 12 key plant functional traits. Using principal component analysis, two functional types (FTs) were identified as most likely to be advantaged (FT1, fast‐growing C4 annuals) and disadvantaged (FT2, slower‐growing C3 perennials) by an extreme climatic event. Competition between the resident vegetation and FT1 plus other C4 phytometers was consistently more intense within the exclusively C3 community compared to the dry C3/C4 community or moist C3/C4 community. The single extreme heating event had the greatest impact on competition, lowering the intensity of competition between the phytometers and resident vegetation. Our results indicate that competition is highly important in limiting the invasion of C3 grasslands by C4 species. The FT1 and FT2 responses confirmed predictions based on plant functional traits, whether growing as phytometers or as part of the resident vegetation. Future increases in climatic variability and the incidence of extreme climatic events are expected to suppress C3 competitive dominance and promote invasion of C4 species, in particular, the FT1 species.  相似文献   
148.
Aim To determine why some communities are more invasible than others and how this depends on spatial scale. Our previous work in serpentine ecosystems showed that native and exotic diversity are negatively correlated at small scales, but became positively correlated at larger scales. We hypothesized that this pattern was the result of classic niche partitioning at small scales where the environment is homogeneous, and a shift to the dominance of coexistence mechanisms that depend on spatial heterogeneity in the environment at large scales. Location Serpentine ecosystem, Northern California. Methods We test the above hypotheses using the phylogenetic relatedness of natives and exotics. We hypothesized that (1) at small scales, native and exotic species should be more distantly related than expected from a random assemblage model because with biotic resistance, successful invaders should have niches that are different from those of the natives present and (2) at large scales, native and exotic species should not be more distantly related than expected. Result We find strong support for the first hypothesis providing further evidence of biotic resistance at small scales. However, at large scales, native and exotic species were also more distantly related than expected. Importantly, however, natives and exotics were more distantly related at small scales than they were at large scales, suggesting that in the transition from small to large scales, biotic resistance is relaxed but still present. Communities at large scales were not saturated in the sense that more species could enter the community, increasing species richness. However, species did not invade indiscriminately. Exotic species closely related to species already established the community were excluded. Main conclusions Native communities determine the identity of exotic invaders even at large spatial scales where communities are unsaturated. These results hold promise for predicting which species will invade a community given the species present.  相似文献   
149.
Aim We sampled riverine macrophyte communities and environmental conditions to compare drivers of alien and native abundance and to provide a general set of environmental correlates of invasion by aquatic macrophytes. Location Streams adjacent to three land‐use types (intensive, agricultural and natural) across a large latitudinal gradient (approximately 27° S–43° S) in Australia. Sites were located near Brisbane (Queensland), Sydney (New South Wales), Canberra (Australian Capital Territory), Melbourne (Victoria) and Hobart (Tasmania). Methods Alien and native aquatic plant species cover, water quality, forest canopy and adjacent land use were measured in three catchment locations (low‐, mid‐ and upper‐catchment) in all cities. Mean richness and cover of native and alien macrophytes were compared in the five cities, three catchment locations, and three land‐use types. Correlation tests examined relationships between alien and native richness at transect, site and city scales. Canonical correspondence analysis (CCA) determined the effects of environment on cover and richness of native and alien plant groups (emergents, floating, forbs/other, graminoids and submerged). Results Variation existed in the aquatic plant community at all scales, but strong patterns emerged with respect to land use and environmental gradients. Alien abundance was more responsive to anthropogenic disturbance (e.g. greater in intensive and agricultural land‐use types, and greater where dissolved nutrients and conductivity were high) than natives, which were unaffected by land‐use type and less responsive overall to environmental gradients. Native and alien richness were uncorrelated at all scales. Main conclusions Natives and aliens of the same life form did not respond similarly to the environment, suggesting inherent differences in their ability to capitalize on anthropogenic disturbance. Our results suggest invasion‐susceptible habitats are those that receive nutrient pollutants and that occur in urban and agricultural areas low in the catchment. Our confidence in these patterns is strengthened by their consistency across a large latitudinal gradient.  相似文献   
150.
Recombination hotspots are small chromosomal regions, where meiotic crossover events happen with high frequency. Recombination is initiated by a double‐strand break (DSB) that requires the intervention of the molecular repair mechanism. The DSB repair mechanism may result in the exchange of homologous chromosomes (crossover) and the conversion of the allelic sequence that breaks into the one that does not break (biased gene conversion). Biased gene conversion results in a transmission advantage for the allele that does not break, thus preventing recombination and rendering recombination hotspots transient. How is it possible that recombination hotspots persist over evolutionary time (maintaining the average chromosomal crossover rate) when they are self‐destructive? This fundamental question is known as the recombination hotspot paradox and has attracted much attention in recent years. Yet, that attention has not translated into a fully satisfactory answer. No existing model adequately explains all aspects of the recombination hotspot paradox. Here, we formulate an intragenomic conflict model resulting in Red Queen dynamics that fully accounts for all empirical observations regarding the molecular mechanisms of recombination hotspots, the nonrandom targeting of the recombination machinery to hotspots and the evolutionary dynamics of hotspot turnover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号