全文获取类型
收费全文 | 516篇 |
免费 | 56篇 |
国内免费 | 10篇 |
专业分类
582篇 |
出版年
2023年 | 5篇 |
2022年 | 4篇 |
2021年 | 11篇 |
2020年 | 18篇 |
2019年 | 22篇 |
2018年 | 17篇 |
2017年 | 21篇 |
2016年 | 18篇 |
2015年 | 20篇 |
2014年 | 27篇 |
2013年 | 22篇 |
2012年 | 16篇 |
2011年 | 19篇 |
2010年 | 18篇 |
2009年 | 26篇 |
2008年 | 27篇 |
2007年 | 31篇 |
2006年 | 37篇 |
2005年 | 36篇 |
2004年 | 28篇 |
2003年 | 24篇 |
2002年 | 23篇 |
2001年 | 22篇 |
2000年 | 22篇 |
1999年 | 12篇 |
1998年 | 11篇 |
1997年 | 9篇 |
1996年 | 7篇 |
1995年 | 2篇 |
1994年 | 7篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
排序方式: 共有582条查询结果,搜索用时 15 毫秒
11.
外来木本植物入侵的生态预测与风险评价综述 总被引:3,自引:0,他引:3
外来植物引种导致的入侵已经成为当前生物多样性保育和引种工作面临的一个紧要研究课题。综述了木本植物入侵的生态预测和生态风险评价方面的国内外相关研究进展。首先介绍了目前国内外木本植物引种的概况,对木本植物入侵的生态预测基本原理做了较为详细的总结。目前比较被认可的生态预测途径主要包括编辑入侵植物名录利用入侵历史纪录预测、物种特征作为入侵的预测指标、繁殖体压力作为建群概率的决定性因素、环境匹配作为入侵潜力的预测工具及专家意见等,并对物种特征进行了归类和分析。物种特征指标主要包括物种的繁殖和快速生长性状指标、对入侵地区局部条件和干扰体系的适应性指标、生物地理分布指标等,并指出在生态预测中单独使用这些指标是不严谨的,而应当多途径互相结合验证。同时还简介了WRA等几个应用较为广泛的实用性植物入侵风险评价系统。分析了目前国内外在木本植物入侵的生态预测方面面临的一些困难,包括入侵机理的复杂性导致的预测难度增大和可信性下降,所用数据库标准的不统一和更新的困难等,指出在进行木本植物引种的生态预测和风险评价研究的同时,必须加强相关法律法规建设,重视入侵机理研究,完善相关的数据库。出于实际情况的限制,可以借鉴国际上实用性杂草风险分析和有害生物风险分析的方法,逐步建立我国的入侵风险评价系统,以满足目前对木本植物入侵的预测和风险评价的需求。 相似文献
12.
Robert A. B. Mason † Julia Cooke Angela T. Moles Michelle R. Leishman 《Global Ecology and Biogeography》2008,17(5):633-640
Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus‐, family‐ or habitat‐specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t‐tests to compare original and introduced range populations, two‐way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7‐fold (all species), 6.9‐fold (herbs only) and 26.1‐fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long‐distance seed dispersal may significantly contribute to the invasiveness of many exotic species. 相似文献
13.
Difference in the predation impact enhanced by morphological divergence between introduced fish populations 总被引:1,自引:0,他引:1
RYUJI YONEKURA YUKIHIRO KOHMATSU† MASAHIDE YUMA‡ 《Biological journal of the Linnean Society. Linnean Society of London》2007,91(4):601-610
The strength of predation impact on recipient environments may vary among introduced populations due to their local adaptations to different prey. We examined whether functional diversification associated with morphological differences may be observed among the introduced populations of invasive bluegill sunfish Lepomis macrochirus (Perciformes, Centrarchidae) in Japan. The two examined populations are morphologically different, although they were recently derived from a common American source and colonized in different lakes. We performed a laboratory experiment wherein these populations were fed the benthic (chironomid larva) and the pelagic prey (daphnid zooplankton). The results revealed that a population colonizing in a shallower lake and foraging on benthic invertebrates in the wild had a greater impact on the benthic prey, whereas the other population colonizing in a deeper lake and foraging on crustacean zooplankton have consumed the pelagic prey more efficiently. A series of regression analyses showed that morphological differences among individuals were responsible for these population differences. The evidence obtained suggests that morphological adaptations by introduced bluegill populations enhance the strength of predation impact on a prey resource consumed in a relevant environment, but reduce the impact on the other prey. Thus, although the introduced Japanese populations were recently derived from a common ancestor, the predation impacts on the native prey community vary due to morphological adaptations to different prey. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 601–610. 相似文献
14.
Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability 总被引:1,自引:0,他引:1
Animals may respond to seasonally changing environments withphysiological and behavioral strategies. Whereas migration isa behavioral strategy used by many taxa, it may not be an optionfor small mammals. However, small mammals can seasonally varythe area of habitat in which they are active. The striped mouseRhabdomys pumilio in the semiarid Succulent Karoo of South Africalives in a seasonal environment, characterized by hot, dry summerswith low food abundance and cold, wet winters, followed by highfood abundance in spring. We radio tracked a total of 28 femalesduring the 2004 dry season, the following breeding season inspring, and the following dry season in 2005 and tested theprediction that females shift their home ranges in relationto food availability. Females shifted their home ranges froman area characterized by evergreen succulent shrubs in the vicinityof a dry riverbed in the dry season to sandy areas that werecharacterized by new plant growth of annuals in spring. Homeranges during the breeding season in spring had a higher percentageof annuals than dry season home ranges measured in spring. Femalehome range size increased during the breeding season. We suggestthat female striped mice shift their home ranges seasonallyto gain access to protein-rich young plant material, which isimportant for breeding. 相似文献
15.
Modelling the introduction and spread of non‐native species: international trade and climate change drive ragweed invasion 下载免费PDF全文
Daniel S. Chapman László Makra Roberto Albertini Maira Bonini Anna Páldy Victoria Rodinkova Branko Šikoparija Elżbieta Weryszko‐Chmielewska James M. Bullock 《Global Change Biology》2016,22(9):3067-3079
Biological invasions are a major driver of global change, for which models can attribute causes, assess impacts and guide management. However, invasion models typically focus on spread from known introduction points or non‐native distributions and ignore the transport processes by which species arrive. Here, we developed a simulation model to understand and describe plant invasion at a continental scale, integrating repeated transport through trade pathways, unintentional release events and the population dynamics and local anthropogenic dispersal that drive subsequent spread. We used the model to simulate the invasion of Europe by common ragweed (Ambrosia artemisiifolia), a globally invasive plant that causes serious harm as an aeroallergen and crop weed. Simulations starting in 1950 accurately reproduced ragweed's current distribution, including the presence of records in climatically unsuitable areas as a result of repeated introduction. Furthermore, the model outputs were strongly correlated with spatial and temporal patterns of ragweed pollen concentrations, which are fully independent of the calibration data. The model suggests that recent trends for warmer summers and increased volumes of international trade have accelerated the ragweed invasion. For the latter, long distance dispersal because of trade within the invaded continent is highlighted as a key invasion process, in addition to import from the native range. Biosecurity simulations, whereby transport through trade pathways is halted, showed that effective control is only achieved by early action targeting all relevant pathways. We conclude that invasion models would benefit from integrating introduction processes (transport and release) with spread dynamics, to better represent propagule pressure from native sources as well as mechanisms for long‐distance dispersal within invaded continents. Ultimately, such integration may facilitate better prediction of spatial and temporal variation in invasion risk and provide useful guidance for management strategies to reduce the impacts of invasion. 相似文献
16.
Outcrossing potential between 11 important genetically modified crops and the Chilean vascular flora 下载免费PDF全文
Miguel A. Sánchez Pablo Cid Humberto Navarrete Carlos Aguirre Gustavo Chacón Erika Salazar Humberto Prieto 《Plant biotechnology journal》2016,14(2):625-637
The potential impact of genetically modified (GM) crops on biodiversity is one of the main concerns in an environmental risk assessment (ERA). The likelihood of outcrossing and pollen‐mediated gene flow from GM crops and non‐GM crops are explained by the same principles and depend primarily on the biology of the species. We conducted a national‐scale study of the likelihood of outcrossing between 11 GM crops and vascular plants in Chile by use of a systematized database that included cultivated, introduced and native plant species in Chile. The database included geographical distributions and key biological and agronomical characteristics for 3505 introduced, 4993 native and 257 cultivated (of which 11 were native and 246 were introduced) plant species. Out of the considered GM crops (cotton, soya bean, maize, grape, wheat, rice, sugar beet, alfalfa, canola, tomato and potato), only potato and tomato presented native relatives (66 species total). Introduced relative species showed that three GM groups were formed having: a) up to one introduced relative (cotton and soya bean), b) up to two (rice, grape, maize and wheat) and c) from two to seven (sugar beet, alfalfa, canola, tomato and potato). In particular, GM crops presenting introduced noncultivated relative species were canola (1 relative species), alfalfa (up to 4), rice (1), tomato (up to 2) and potato (up to 2). The outcrossing potential between species [OP; scaled from ‘very low’ (1) to ‘very high’ (5)] was developed, showing medium OPs (3) for GM–native relative interactions when they occurred, low (2) for GMs and introduced noncultivated and high (4) for the grape‐Vitis vinifera GM–introduced cultivated interaction. This analytical tool might be useful for future ERA for unconfined GM crop release in Chile. 相似文献
17.
Ancient introductions of mammals in the Mediterranean Basin and their implications for conservation 总被引:2,自引:0,他引:2
- 1 The importance of taxonomy to the determination of conservation priorities and actions is widely accepted. It should be not surprising therefore that the taxonomic treatment of mammal species that have been subject to human actions in antiquity may well influence the contemporary assessment of conservation priorities at various levels.
- 2 As a result of early extinctions caused by humans and protohistoric and historic introductions, we suggest that the Mediterranean Basin and its islands are particularly prone to misdirection of efforts towards biodiversity conservation.
- 3 The two main risks associated with the failure to use an evolutionary and palaeoecological approach to conservation efforts are (i) an underestimation of the conservation importance of distinctive continental taxa vs. the apparent endemicity of island taxa; and (ii) a serious risk for native and endemic island species when anthropochorous mammals, especially ungulates, misguidedly become the focus of conservation actions, particularly inside protected areas.
- 4 Urgent measures, including refinement of mammal taxonomy, the exclusion of known anthropochorous taxa from conservation lists and implementation of protective legislation, are necessary to maintain the uniqueness and richness of the Mediterranean biodiversity hotspot.
18.
MAXWELL B. JOSEPH JONAH PIOVIA‐SCOTT SHARON P. LAWLER KAREN L. POPE 《Freshwater Biology》2011,56(5):828-838
1. The introduction of trout to montane lakes has negatively affected amphibian populations across the western United States. In northern California’s Klamath–Siskiyou Mountains, introduced trout have diminished the distribution and abundance of a native ranid frog, Rana (=Lithobates) cascadae. This is primarily thought to be the result of predation on frog larvae. However, if trout feed on larval aquatic insects that are available to R. cascadae only after emergence, then resource competition may also affect this declining native amphibian. 2. Stomach contents of R. cascadae were compared between lakes that contained trout and those from which introduced trout were removed. Total prey mass in stomach contents relative to frog body mass was not significantly different between lakes with fish and fish‐removal lakes, but in the former R. cascadae consumed a smaller proportion of adult aquatic insects. The stomach contents of fish included larvae of aquatic insects that are, as adults, eaten by R. cascadae. 3. Rana cascadae consumed fewer caddisflies (Trichoptera) and more grasshoppers (Orthoptera) at lakes with higher densities of fish. At lakes with greater aquatic habitat complexity, R. cascadae consumed more water striders (Hemiptera: Gerridae) and terrestrial spiders (Araneae). 4. We suggest that reductions in the availability of emerging aquatic insects cause R. cascadae to consume more terrestrial prey where trout are present. Thus, introduced trout may influence native amphibians directly through predation and, indirectly, through pre‐emptive resource competition. 相似文献
19.
A. K. Lindholm M. L. Head R. C. Brooks L. A. Rollins F. C. Ingleby S. R. K. Zajitschek 《Journal of evolutionary biology》2014,27(2):437-448
Males from different populations of the same species often differ in their sexually selected traits. Variation in sexually selected traits can be attributed to sexual selection if phenotypic divergence matches the direction of sexual selection gradients among populations. However, phenotypic divergence of sexually selected traits may also be influenced by other factors, such as natural selection and genetic constraints. Here, we document differences in male sexual traits among six introduced Australian populations of guppies and untangle the forces driving divergence in these sexually selected traits. Using an experimental approach, we found that male size, area of orange coloration, number of sperm per ejaculate and linear sexual selection gradients for male traits differed among populations. Within populations, a large mismatch between the direction of selection and male traits suggests that constraints may be important in preventing male traits from evolving in the direction of selection. Among populations, however, variation in sexual selection explained more than half of the differences in trait variation, suggesting that, despite within‐population constraints, sexual selection has contributed to population divergence of male traits. Differences in sexual traits were also associated with predation risk and neutral genetic distance. Our study highlights the importance of sexual selection in trait divergence in introduced populations, despite the presence of constraining factors such as predation risk and evolutionary history. 相似文献
20.
Juliet Brodie Paul K. Hayes Gary L. Barker Linda M. Irvine Inka Bartsch 《Journal of phycology》1998,34(6):1069-1074
Sequence data of the rbc L –rbc S noncoding intergenic spacer of the plastid genome for 47 specimens of Porphyra and Bangia from the northeast Atlantic reveal that they fall into 11 distinct sequences: P. purpurea, P. dioica (includes a sample of P. "ochotensis" from Helgoland), P. amplissima (includes P. thulaea and British records of P. "miniata" ), P. linearis, P. umbilicalis, P. "miniata", B. atropurpurea s.l. from Denmark and B. atropurpurea s.l. from Wales, P. drachii, P. leucosticta (includes a British record of P. "miniata var. abyssicola" ), and P. "insolita" (includes P. "yezoensis" from Helgoland). Of these, data obtained for P. purpurea , P. dioica, P. amplissima, P. linearis, P. umbilicalis, P. drachii, and P. leucosticta were based on type specimens or material compared with types. Comparison of sequence data for Porphyra spp. and Bangia atropurpurea s.l. (including B. fuscopurpurea, the type species of Bangia ) confirms that the species are congeneric. The data also confirm that the number of layers that make up the Porphyra thallus are not taxonomically significant. Comparison of sequence data for species from the northeast Atlantic with those for material of two species from the Pacific reveals that the species fall into two distinct groupings: an Atlantic group, containing P. purpurea, P. dioica, P. amplissima, P. linearis, P. umbilicalis, P. "miniata", and B. atropurpurea, and a Pacific group, containing P. "pseudolinearis", P. drachii, P. leucosticta, P. "yezoensis" (including a sample of P. "tenera" ), and P. "insolita" (including P. "yezoensis" from Helgoland). The possibility of alien species in the northeast Atlantic is discussed. 相似文献