首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3134篇
  免费   166篇
  国内免费   88篇
  2023年   71篇
  2022年   70篇
  2021年   111篇
  2020年   77篇
  2019年   86篇
  2018年   79篇
  2017年   83篇
  2016年   49篇
  2015年   82篇
  2014年   109篇
  2013年   180篇
  2012年   106篇
  2011年   112篇
  2010年   84篇
  2009年   121篇
  2008年   143篇
  2007年   159篇
  2006年   140篇
  2005年   102篇
  2004年   133篇
  2003年   98篇
  2002年   106篇
  2001年   72篇
  2000年   76篇
  1999年   76篇
  1998年   74篇
  1997年   59篇
  1996年   63篇
  1995年   63篇
  1994年   60篇
  1993年   48篇
  1992年   42篇
  1991年   56篇
  1990年   48篇
  1989年   53篇
  1988年   40篇
  1987年   27篇
  1986年   30篇
  1985年   24篇
  1984年   26篇
  1982年   24篇
  1981年   20篇
  1980年   15篇
  1979年   15篇
  1978年   16篇
  1977年   12篇
  1976年   9篇
  1973年   8篇
  1971年   8篇
  1970年   6篇
排序方式: 共有3388条查询结果,搜索用时 31 毫秒
981.
1. In nature, competitive interactions occur when different species exploit similar niches. Parasitic wasps (parasitoids) often have narrow host ranges and need to cope with competitors that use the same host species for development of their offspring. When larvae of different parasitoid species develop in the same host, this leads to intrinsic and often contest competition. Thus far, most studies on intrinsic competition have focused on primary parasitoids. However, competition among primary hyperparasitoids, parasitic wasps that use primary parasitoids as a host, has been little studied. 2. This study investigated intrinsic competition between two primary hyperparasitoids, the gregarious Baryscapus galactopus and the solitary Mesochorus gemellus, which lay their eggs in primary parasitoid larvae of Cotesia rubecula, while those in turn are developing inside their herbivore host, Pieris rapae. The aims were to identify: (i) which hyperparasitoid is the superior competitor; and (ii) whether oviposition sequence affects the outcome of intrinsic competition. 3. The results show that B. galactopus won 70% of contests when the two hyperparasitoids parasitised the host at the same time, and 90% when B. galactopus oviposited first. When M. gemellus had a 48 h head start, the two hyperparasitoids had an equal chance to win the competition. This suggests that B. galactopus is an intrinsically superior competitor to M. gemellus. Moreover, the outcome of competition is affected by time lags in oviposition events. 4. In contrast to what has been reported for primary parasitoids, we found that a gregarious hyperparasitoid species had a competitive advantage over a solitary species.  相似文献   
982.
《Cell》2021,184(23):5715-5727.e12
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
  相似文献   
983.
《Cell reports》2020,30(6):2028-2039.e4
  1. Download : Download high-res image (140KB)
  2. Download : Download full-size image
  相似文献   
984.
Quantitative and morphometric observations were carried out on neurons of L3-L6 dorsal root ganglia (DRGs) in control and vitamin-E-deficient rats at different ages. Controls were fed a standard diet and sacrificed at 1 or at 5 months of age; deficient rats were fed a diet without vitamin E from 1 to 5 months of age and then sacrificed. No significant difference in total number of neurons was found, but an increase in neuron sizes, a decrease in nucleus-cytoplasm ratio, and a more circular neuron shape were found in controls with increasing age (from 1 to 5 months). In L3-L6 DRGs of vitamin-E-deficient rats (5 months of age), a higher number of neurons was found than in those of either young or adult controls. Moreover, some morphometric characteristics of neurons in the deficient rats were similar to those of neurons in 1-month-old controls. The findings suggest that vitamin E deficiency can trigger events resulting in appearance of new neurons, possibly anticipating phenomena that normally occur in aging.  相似文献   
985.
986.
987.
《Current biology : CB》2020,30(22):4541-4546.e5
  1. Download : Download high-res image (123KB)
  2. Download : Download full-size image
  相似文献   
988.
Sound production that is mediated by intrinsic or extrinsic swim bladder musculature has evolved multiple times in teleost fishes. Sonic muscles must contract rapidly and synchronously to compress the gas‐filled bladder with sufficient velocity to produce sound. Muscle modifications that may promote rapid contraction include small fiber diameter, elaborate sarcoplasmic reticulum (SR), triads at the A–I boundary, and cores of sarcoplasm. The diversity of innervation patterns indicate that sonic muscles have independently evolved from different trunk muscle precursors. The analysis of sonic motor pathways in distantly related fishes is required to determine the relationships between sonic muscle evolution and function in acoustic signaling. We examined the ultrastructure of sonic and adjacent hypaxial muscle fibers and the distribution of sonic motor neurons in the coral reef Pyramid Butterflyfish (Chaetodontidae: Hemitaurichthys polylepis) that produces sound by contraction of extrinsic sonic muscles near the anterior swim bladder. Relative to adjacent hypaxial fibers, sonic muscle fibers were sparsely arranged among the endomysium, smaller in cross‐section, had longer sarcomeres, a more elaborate SR, wider t‐tubules, and more radially arranged myofibrils. Both sonic and non‐sonic muscle fibers possessed triads at the Z‐line, lacked sarcoplasmic cores, and had mitochondria among the myofibrils and concentrated within the peripheral sarcoplasm. Sonic muscles of this derived eutelost possess features convergent with other distant vocal taxa (other euteleosts and non‐euteleosts): small fiber diameter, a well‐developed SR, and radial myofibrils. In contrast with some sonic fishes, however, Pyramid Butterflyfish sonic muscles lack sarcoplasmic cores and A–I triads. Retrograde nerve label experiments show that sonic muscle is innervated by central and ventrolateral motor neurons associated with spinal nerves 1–3. This restricted distribution of sonic motor neurons in the spinal cord differs from many euteleosts and likely reflects the embryological origin of sonic muscles from hypaxial trunk precursors rather than occipital somites. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
989.
990.
Dorsal root ganglia (DRG) neurons, located in the intervertebral foramina of the spinal column, can be used to create an in vitro system facilitating the study of nerve regeneration and myelination. The glial cells of the peripheral nervous system, Schwann cells (SC), are key facilitators of these processes; it is therefore crucial that the interactions of these cellular components are studied together. Direct contact between DRG neurons and glial cells provides additional stimuli sensed by specific membrane receptors, further improving the neuronal response. SC release growth factors and proteins in the culture medium, which enhance neuron survival and stimulate neurite sprouting and extension. However, SC require long proliferation time to be used for tissue engineering applications and the sacrifice of an healthy nerve for their sourcing. Adipose-derived stem cells (ASC) differentiated into SC phenotype are a valid alternative to SC for the set-up of a co-culture model with DRG neurons to study nerve regeneration. The present work presents a detailed and reproducible step-by-step protocol to harvest both DRG neurons and ASC from adult rats; to differentiate ASC towards a SC phenotype; and combines the two cell types in a direct co-culture system to investigate the interplay between neurons and SC in the peripheral nervous system. This tool has great potential in the optimization of tissue-engineered constructs for peripheral nerve repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号