首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1822篇
  免费   153篇
  国内免费   83篇
  2058篇
  2024年   6篇
  2023年   40篇
  2022年   37篇
  2021年   65篇
  2020年   93篇
  2019年   115篇
  2018年   99篇
  2017年   78篇
  2016年   76篇
  2015年   65篇
  2014年   115篇
  2013年   196篇
  2012年   83篇
  2011年   101篇
  2010年   77篇
  2009年   110篇
  2008年   125篇
  2007年   103篇
  2006年   93篇
  2005年   86篇
  2004年   57篇
  2003年   35篇
  2002年   60篇
  2001年   30篇
  2000年   15篇
  1999年   14篇
  1998年   13篇
  1997年   14篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1950年   1篇
排序方式: 共有2058条查询结果,搜索用时 9 毫秒
51.
Salmonella typhimurium vaccine strains were used as antigen delivery system for oral immunisation of chickens against two antigens of the coccidian parasite Eimeria tenella. The cDNAs of the known E. tenella proteins, SO7 and TA4, were isolated from total RNA and subcloned into the expression vectors pQE30 and pTECH2. Subcutaneous immunisation of chickens with Escherichia coli-expressed SO7 and TA4 revealed that both proteins were immunogenic. Both cDNAs were subcloned into plasmids of the pTECH2 vector system, which allows them to be expressed as fusion proteins with the highly immunogenic fragment C of the tetanus toxin under control of the anaerobically inducible nirB promoter. Plasmids were introduced into the S. typhimurium vaccine strains SL3261, C5aroD and C5htrA. SDS-PAGE and Western blot analysis revealed expression of both fusion proteins in all strains under anaerobic culture conditions. Three-week-old white leghorn chickens were orally immunised with 10(9) CFU per animal. The stability of the recombinant bacteria was revealed by recovery of viable Salmonella containing the respective plasmids from the liver of the immunised chickens at day 3 after inoculation. Specific serum IgG antibodies against the SO7-or TA4-antigens were detectable by ELISA 2 weeks after oral immunisation and remained for at least 6 weeks, while specific IgA antibodies were restricted to the bile of the birds. All chickens produced serum IgG and IgA to S. typhimurium lipopolysaccharides. Our data show that a single oral inoculation with recombinant S. typhimurium SL3261, C5aroD and C5htrA can induce specific antibody responses to heterologous Eimeria antigens in chickens, suggesting that recombinant Salmonella are a suitable delivery system for vaccines against Eimeria infections.  相似文献   
52.
Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.  相似文献   
53.
54.
55.
56.
An important function of the endothelium is to regulate the transport of liquid and solutes across the semi-permeable vascular endothelial barrier. Two cellular pathways have been identified controlling endothelial barrier function. The normally restrictive paracellular pathway, which can become "leaky" during inflammation when gaps are induced between endothelial cells at the level of adherens and tight junctional complexes, and the transcellular pathway, which transports plasma proteins the size of albumin via transcytosis in vesicle carriers originating from cell surface caveolae. During non-inflammatory conditions, caveolae-mediated transport may be the primary mechanism of vascular permeability regulation of fluid phase molecules as well as lipids, hormones, and peptides that bind avidly to albumin. Src family protein tyrosine kinases have been implicated in the upstream signaling pathways that lead to endothelial hyperpermeability through both the paracellular and transcellular pathways. Endothelial barrier dysfunction not only affects vascular homeostasis and cell metabolism, but also governs drug delivery to underlying cells and tissues. In this review of the field, we discuss the current understanding of Src signaling in regulating paracellular and transcellular endothelial permeability pathways and effects on endogenous macromolecule and drug delivery.  相似文献   
57.
外泌体是直径为 30~100 nm 的内吞衍生囊泡,由多种活细胞分泌,含有大量的与其来源和功能密切相关的蛋白质、脂质和 RNA 分子,可以在细胞间传递。已有研究表明癌症患者血液中的外泌体浓度比正常人高,且其中包含癌症标志分子,因此其有潜力成为疾病诊 断的生物标志物。此外,作为一种天然的物质运输载体,外泌体已经被作为一种新型的药物递送系统,用于肿瘤及阿尔茨海默病等疾病的治疗。 对外泌体作为疾病诊断标记物以及药物递送载体的研究进展进行综述。  相似文献   
58.
This study describes the expression, purification, and characterization of a recombinant fusion toxin, DAB(389)TTC, composed of the catalytic and membrane translocation domains of diphtheria toxin (DAB(389)) linked to the receptor binding fragment of tetanus toxin (C-fragment). As determined by its ability to inhibit cellular protein synthesis in primary neuron cultures, DAB(389)TTC was approximately 1,000-fold more cytotoxic than native diphtheria toxin or the previously described fusion toxin, DAB(389)MSH. The cytotoxic effect of DAB(389)TTC on cultured cells was specific toward neuronal-type cells and was blocked by coincubation of the chimeric toxin with tetanus antitoxin. The toxicity of DAB(389)TTC, like that of diphtheria toxin, was dependent on passage through an acidic compartment and ADP-ribosyltransferase activity of the DAB(389) catalytic fragment. These results suggest that a catalytically inactive form of DAB(389)TTC may be useful as a nonviral vehicle to deliver exogenous proteins to the cytosolic compartment of neurons.  相似文献   
59.
BACKGROUND: A major obstacle to achieving effective DNA-based therapeutics is efficient delivery of the DNA to its site of action in the cell. Upon internalization by endocytosis, the endosomal membrane represents a critical physical barrier preventing access of DNA to the cell cytosol. In order to overcome the membrane barrier and facilitate cytosolic entry, the endosomolytic bacterial protein listeriolysin O (LLO) is a potentially promising agent. METHODS: LLO was incorporated in an anionic liposome-entrapped polycation-condensed DNA delivery system (LPDII). Plasmid DNA was condensed using protamine sulfate and then complexed to anionic liposomes. LLO was incorporated into the delivery vehicle through encapsulation in anionic, pH-sensitive liposomes. Transfection levels were monitored using a model reporter plasmid encoding luciferase in P388D1 cells, a macrophage-like cell line. RESULTS: Transfection using the anionic LPDII delivery platform was enhanced through incorporation of LLO. Additionally, the net charge of the condensate, the lipid composition, and the total amount of LLO-liposomes were all capable of modulating the transfection levels of the vehicle. Importantly, in the presence of serum, transfection levels using the LLO-containing LPDII system were comparable to established cationic lipid delivery systems. CONCLUSIONS: LLO is capable of facilitating transfection using an anionic LPDII system. This anionic delivery vehicle represents the successful combination of the LPDII system for condensation of the DNA with the unique endosomolytic properties of LLO for improved transfection using plasmid DNA.  相似文献   
60.
Abstract

Liposomal amphotericin B (AmBisome®) is a lipid-based nanotherapeutic that is used successfully worldwide to treat a broad range of life-threatening invasive fungal infections. In subtropical regions, AmBisome is emerging as the treatment of choice for human parasitic protozoan pathogens such as those from the genus Leishmania. The key to the remarkable efficacy of AmBisome is attributed to its liposome based formulation to deliver a potent drug at high dosage with significantly reduced toxicity in patients with immunocompromised systems. In spite of the rising frequency of AmBisome usage globally, the mechanisms underlying its ability to target to the sites of infection remain largely unknown. This review provides an overview of the current mechanistic understanding of AmBisome, discusses potential challenges and opportunities for the development of clinically effective, refractory resistant antifungal agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号