首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17387篇
  免费   1111篇
  国内免费   1427篇
  2024年   49篇
  2023年   299篇
  2022年   334篇
  2021年   527篇
  2020年   475篇
  2019年   574篇
  2018年   466篇
  2017年   466篇
  2016年   570篇
  2015年   618篇
  2014年   809篇
  2013年   1027篇
  2012年   613篇
  2011年   723篇
  2010年   608篇
  2009年   755篇
  2008年   831篇
  2007年   932篇
  2006年   786篇
  2005年   747篇
  2004年   712篇
  2003年   629篇
  2002年   578篇
  2001年   476篇
  2000年   478篇
  1999年   413篇
  1998年   451篇
  1997年   349篇
  1996年   372篇
  1995年   331篇
  1994年   282篇
  1993年   269篇
  1992年   281篇
  1991年   249篇
  1990年   199篇
  1989年   200篇
  1988年   169篇
  1987年   142篇
  1986年   124篇
  1985年   174篇
  1984年   145篇
  1983年   85篇
  1982年   130篇
  1981年   106篇
  1980年   71篇
  1979年   80篇
  1978年   60篇
  1977年   48篇
  1976年   30篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The challenges of transition toward the postpetroleum world shed light on the biocatalysis as the most sustainable way for the valorization of biobased raw materials. However, its industrial exploitation strongly relies on integration with innovative technologies such as microscale processing. Microflow devices remarkably accelerate biocatalyst screening and engineering, as well as evaluation of process parameters, and intensify biocatalytic processes in multiphase systems. The inherent feature of microfluidic devices to operate in a continuous mode brings additional interest for their use in chemoenzymatic cascade systems and in connection with the downstream processing units. Further steps toward automation and analytics integration, as well as computer‐assisted process development, will significantly affect the industrial implementation of biocatalysis and fulfill the promises of the bioeconomy. This review provides an overview of recent examples on implementation of microfluidic devices into various stages of biocatalytic process development comprising ultrahigh‐throughput biocatalyst screening, highly efficient biocatalytic process design including specific immobilization techniques for long‐term biocatalyst use, integration with other (bio)chemical steps, and/or downstream processing.  相似文献   
972.
Members of the TNF and TNF receptor superfamilies acting by both forward and reverse signaling are increasingly recognized as major physiological regulators of axon growth and tissue innervation in development. Studies of the experimentally tractable superior cervical ganglion (SCG) neurons and their targets have shown that only TNF reverse signaling, not forward signaling, is a physiological regulator of sympathetic innervation. Here, we compared SCG neurons and their targets with prevertebral ganglion (PVG) neurons and their targets. Whereas all SCG targets were markedly hypoinnervated in both TNF‐deficient and TNFR1‐deficient mice, PVG targets were not hypoinnervated in these mice and one PVG target, the spleen, was significantly hyperinnervated. These in vivo regional differences in innervation density were related to in vitro differences in the responses of SCG and PVG neurons to TNF reverse and forward signaling. Though TNF reverse signaling enhanced SCG axon growth, it did not affect PVG axon growth. Whereas activation of TNF forward signaling in PVG axons inhibited growth, TNF forward signaling could not be activated in SCG axons. These latter differences in the response of SCG and PVG axons to TNF forward signaling were related to TNFR1 expression, whereas PVG axons expressed TNFR1, SCG axons did not. These results show that both TNF reverse and forward signaling are physiological regulators of sympathetic innervation in different tissues.  相似文献   
973.
The extent and pattern of glycosylation on therapeutic antibodies can influence their circulatory half-life, engagement of effector functions, and immunogenicity, with direct consequences to efficacy and patient safety. Hence, controlling glycosylation patterns is central to any drug development program, yet poses a formidable challenge to the bio-manufacturing industry. Process changes, which can affect glycosylation patterns, range from manufacturing at different scales or sites, to switching production process mode, all the way to using alternative host cell lines. In the emerging space of biosimilars development, often times all of these aspects apply. Gaining a deep understanding of the direction and extent to which glycosylation quality attributes can be modulated is key for efficient fine-tuning of glycan profiles in a stage appropriate manner, but establishment of such platform knowledge is time consuming and resource intensive. Here we report an inexpensive and highly adaptable screening system for comprehensive modulation of glycans on antibodies expressed in CHO cells. We characterize 10 media additives in univariable studies and in combination, using a design of experiments approach to map the design space for tuning glycosylation profile attributes. We introduce a robust workflow that does not require automation, yet enables rapid process optimization. We demonstrate scalability across deep wells, shake flasks, AMBR-15 cell culture system, and 2 L single-use bioreactors. Further, we show that it is broadly applicable to different molecules and host cell lineages. This universal approach permits fine-tuned modulation of glycan product quality, reduces development costs, and enables agile implementation of process changes throughout the product lifecycle.  相似文献   
974.
975.
CD40‐activated CD40L reverse signaling is a major physiological regulator of the growth of neural processes in the developing nervous system. Previous work on superior cervical ganglion (SCG) neurons of the paravertebral sympathetic chain has shown that CD40L reverse signaling enhances NGF‐promoted axon growth and tissue innervation. Here we show that CD40L reverse signaling has the opposite function in prevertebral ganglion (PVG) sympathetic neurons. During a circumscribed perinatal window of development, PVG neurons cultured from Cd40–/– mice had substantially larger, more exuberant axon arbors in the presence of NGF than PVG neurons cultured from wild‐type mice. Tissues that receive their sympathetic innervation from PVG neurons were markedly hyperinnervated in Cd40–/– mice compared with wild‐type mice. The exuberant axonal growth phenotype of cultured CD40‐deficient perinatal PVG neurons was pared back to wild‐type levels by activating CD40L reverse signaling with a CD40‐Fc chimeric protein, but not by activating CD40 forward signaling with CD40L. The co‐expression of CD40 and CD40L in PVG neurons suggests that these proteins engage in an autocrine signaling loop in these neurons. Our work shows that CD40L reverse signaling is a physiological regulator of NGF‐promoted sympathetic axon growth and tissue innervation with opposite effects in paravertebral and prevertebral neurons.  相似文献   
976.
利用高通量测序技术对火龙果(Hylocereus undulatus Britt)红肉品种‘大红二号’的花芽、果实和枝条不同发育阶段的基因表达进行研究。结果显示,转录组测序共获得468.68 Gb原始数据(Raw data),从头组装获得239 152条转录本和162 519条unigene,约53.74%的unigene得到注释。分别在43 506条和16 251条unigene中检测到600 283个SNP位点和56 147个SSR位点。基因表达分析结果表明,在火龙果不同组织Fl510、Fl513、Fl514、Fl518、F711、F715、S513、S419中分别有31、7、5、152、17、63、17、8个特异表达的unigene。通过GO和KEGG富集分析,发现了一些组织特异的GO条目和代谢通路,如在Fl510中富集的类萜骨架生物合成代谢通路等。本研究还对参与花发育的候选基因进行了鉴定和表达分析,他们包括COL基因、FT-like基因、分生组织决定基因和器官决定基因等。  相似文献   
977.
978.
In the purification of monoclonal antibodies, ion-exchange chromatography is typically used among the polishing steps to reduce the amount of product-related impurities such as aggregates and fragments, whilst simultaneously reducing HCP, residual Protein A and potential toxins and viruses. When the product-related impurities are difficult to separate from the products, the optimization of these chromatographic steps can be complex and laborious. In this paper, we optimize the polishing chromatography of a monoclonal antibody from a challenging ternary feed mixture by introducing a hybrid approach of the simplex method and a form of local optimization. To maximize the productivity of this preparative bind-and-elute cation-exchange chromatography, wide ranges of the three critical operational parameters—column loading, the initial salt concentration, and gradient slope—had to be considered. The hybrid optimization approach is shown to be extremely effective in dealing with this complex separation that was subject to multiple constraints based on yield, purity, and product breakthrough. Furthermore, it enabled the generation of a large knowledge space that was subsequently used to study the sensitivity of the objective function. Increased design space understanding was gained through the application of Monte Carlo simulations. Hence, this work proposes a powerful hybrid optimization method, applied to an industrially relevant process development challenge. The properties of this approach and the results and insights gained, make it perfectly suited for the rapid development of biotechnological unit operations during early-stage bioprocess development.  相似文献   
979.
980.
本研究对葡萄(Vitis vinifera L.)的Golden2-like (GLK)转录因子家族进行了全基因组鉴定和表达模式分析,并利用品种‘玫瑰香’(V.vinifera cv.Muscat Hamburg)进一步验证其在低温胁迫下的响应。结果显示,葡萄Golden2-like家族共46个成员,分为5个亚族,同一亚族的保守结构域相似。46个VvGLK分别定位于细胞核、叶绿体、细胞质和过氧化物酶体中,其启动子区域含多种逆境应答顺式作用元件。基因芯片分析结果表明,22个Golden2-like基因在果实发育过程中变化显著。同时,有15、15和9个基因分别响应盐、干旱和低温胁迫。qRT-PCR分析发现26个基因参与低温应答。VvGLK41在所有胁迫处理中均下调表达。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号