首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   1篇
  国内免费   9篇
  59篇
  2017年   1篇
  2016年   2篇
  2012年   1篇
  2009年   1篇
  2007年   1篇
  2006年   4篇
  2005年   9篇
  2004年   4篇
  2003年   4篇
  2002年   5篇
  2001年   5篇
  2000年   9篇
  1999年   4篇
  1998年   2篇
  1997年   3篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
排序方式: 共有59条查询结果,搜索用时 9 毫秒
31.
利用已选育的抗白粉病烟农15-中间偃麦草二体异附加系与农林26-离果山羊草3C染色体附加系杂交.对其F1、F2、F3的细胞遗传学进行研究.结果表明:F1花粉母细胞减数分裂中期Ⅰ染色体构型紊乱,在39.48%的细胞中发现染色体断片、单价体,后期Ⅰ、后期Ⅱ出现落后染色体、染色体桥.四分体期微核出现频率达48.65%,说明杀配子染色体可有效诱导染色体发生断裂等结构变异;F2代在细胞学方面仍不稳定,表现为染色体数目发生变异,花粉母细胞减数分裂染色体构型紊乱。多价体、落后染色体、染色体桥及微核的普遍出现.说明染色体问可能发生断裂、重接、交换或易位等现象,F2代白粉病抗性也出现分离;F3代虽然染色体数日和白粉病抗性仍在分离,但花粉母细胞减数分裂中期Ⅰ染色体构型较F2稳定,相对紊乱系数下降.从F3代鉴定出了染色体数目为42、构型稳定且对白粉病表现免疫的单株。  相似文献   
32.
通过分析小麦(Triticum aestivum L.)-中间偃麦草(Agropyron intermedium(Host)Beav)异附加系TA1-Ⅰ系列的麦谷蛋白SDS-PAGE电泳图谱和基因组DNA的PCR扩增产物,发现在异附加系TAI-13中附加的中间偃麦草染色体上具有编码高分子量和低分子量麦谷蛋白亚基基因的位点,属于第一同源群.随后,采用RT-PCR方法,从TAI-13的未成熟子粒中克隆了4个来自中间偃麦草的低分子量麦谷蛋白亚基基因.序列分析表明,13003、13006和13054是包括信号肽编码序列的全长基因,而13514没有信号肽编码序列.根据由核苷酸序列推导的蛋白质分子的N-末端氨基酸序列,这4个基因编码的麦谷蛋白亚基可分为3种类型,即Ai-M型(由基因13514编码,命名为LAi1)、Ai-Q型(由基因13006和13045编码,分别命名为LAi2和LAi3)和Ai-Ⅰ型(由基因13003编码,命名为LAi4).通过与小麦的低分子量麦谷蛋白亚基分子比较,发现Ai-M和Ai-Q是两种未见报道的新的低分子量麦谷蛋白亚基类型,而Ai-Ⅰ型与小麦的Ⅰ型亚基相似.氨基酸序列分析发现,基因13514编码的蛋白质亚基分子LAi1有较长的重复区(26个重复模块)和较多的半胱氨酸残基(9个),推测其可形成3个分子间二硫键,可能对增强面团的强度和粘弹性有正面效应.  相似文献   
33.
小偃麦附加系Z1和Z2中外源染色体2Ai-2的结构组成@张增燕$中国农业科学院作物育种栽培研究所!北京100081@辛志勇$中国农业科学院作物育种栽培研究所!北京100081@陈孝$中国农业科学院作物育种栽培研究所!北京100081小偃麦;;附加系;;染色体  相似文献   
34.
中间偃麦草(Thinopyrum intermedium(Host)Barkworth et Dewey)是禾本科小麦族植物中的一个异源六倍体物种,是重要的牧草植物,在小麦的抗病育种中发挥了重要作用.利用荧光原位杂交(FISH)技术,在体细胞中期染色体上,对18S-5.8S-26S rDNA位点进行了物理定位,发现该物种有3~4对染色体携带18S-5.8S-26S rDNA主位点.结合基因组原位杂交(GISH)分析,证明中间偃麦草的St基因组中有一对同源染色体短臂末端携带一个主位点,其余2~3对主位点位于E基因组染色体上.对不同来源的材料研究表明:18S-5.8S-26S rDNA位点的数目(包括主位点和小位点)、位置、拷贝数在不同收集材料之间的差异较大,甚至在同一个体的不同细胞中也存在差异.讨论了rDNA物理作图数据在分析系统发育问题中的局限性.结合中间偃麦草的三个可能的二倍体基因组供体(Th.bessarabicum、Th.elongatum和Pseudoroegneria stipifolia)rDNA位点分析的结果,对中间偃麦草进化过程中rDNA位点的变化进行了分析,同时,对其中一份材料的核ITS序列进行了克隆、测序和系统发育分析,发现在中间偃麦草中,ITS序列具有很高的异质性.  相似文献   
35.
中间偃麦草的GISH分析   总被引:19,自引:1,他引:19  
吉万全  FEDAK  George 《西北植物学报》2001,21(3):401-405,T001
以染色体组为E^eE^e的二倍体长穗偃麦草(Thinopyrum elongatum,2n=2x=14)、染色体组为E^bE^b的二倍体比萨偃麦草(Th.bessarabicum,2n=2x=14)、染色体组为StStStSt的四倍体拟鹅冠草(Pseudoroegneiria strigosa,2n=4x=28)的总基因组DNA为探针,对中间偃麦草(Th.intermedium)进行GISH分析。结果表明,中间偃麦草是由2个亲缘关系较近的染色体组、1个亲缘关系较远的染色体组构成;中间偃麦草所含的亲缘关系较近的染色体组分别与二倍长穗偃麦草染色体组E^e、比萨偃麦草染色体组E^b、以及1个亲缘关系较远的染色体组与拟鹅冠草染色体组St基本相似,但不完全一样,因此,中间偃麦草的染色体组用E^etE^etE^btStSt表示。  相似文献   
36.
Intergeneric hybrids (ABDJJsS genomes) were made between Triticum aestivum cv. Chinese Spring (CS) and Thinopyrum intermedium. Genomic in situ hybridization (GISH) using genomic DNA probes from Pseudoroegneria libanotica (Hackel) D.R. Dewey (genome S, 2n = 14) was used to study chromosome pairing among J, Js, S and wheat ABD genomes in the hybrids. It was shown that in the hexaploid (ABDJJsS) hybrids, high pairing occurred among wheat chromosomes and among Thinopyrum chromosomes. A closer relationship was observed among the three genomes of Th. intermedium than among the three genomes of T. aestivum. It was further discerned that S genome chromosomes paired with J- and Js-genome chromosomes at a high frequency. The frequency of heterologous pairing between S and J or S and Js chromosomes was higher than those between J and Js chromosomes, indicating that the S-genome was more closely related with these two genomes. Our results provided direct molecular cytogenetic evidence for the hypothesis that S-genome chromosomes are genetically similar to the J-genome chromosomes and, therefore, genetic exchange between these genomes is possible. The discovery of a close relationship among S, J and Js genomes provides valuable markers for molecular cytogenetic analyses using S-genomic DNA probes in monitoring the transfer of useful traits from Thinopyrum species into wheat. Received: 23 August 2000 / Accepted: 5 September 2000  相似文献   
37.
为分析普通小麦(Triticumaestivum)-天兰冰草(Agropyronintermedium)部分双二倍体──远中2号(2n=54)的染色体构成,用生物素(biotin-16-dUTP)标记天兰冰草染色体组DNA作为探针,以普通小麦品种中国春染色体组DNA为封闭DNA(blockingDNA),与远中2号的有丝分裂中期染色体DNA进行了分子原位杂交。证明远中2号除具有普通小麦的21对染色体外,附加了1对小麦-天兰冰草易位染色体(即天兰冰草染色体片段易位到小麦染色体的两臂端部)、5对天兰冰草染色体。说明小麦-天兰冰草部分双二倍体在形成过程中染色体行为是比较复杂的,不仅可能产生小麦-天兰冰草染色体间易位,而且小麦染色体也可能与天兰冰草染色体的3种染色休组染色体共同参与组建新的染色体组附加到小麦中去。  相似文献   
38.
39.
抗病基因Bdv2抑制大麦黄矮病毒复制和运动的分子证据   总被引:4,自引:0,他引:4  
小麦-中间偃麦草易位系YW642含有一个源于中间偃麦草7X染色体的抗性基因Bdv2,对大麦黄矮病毒GAV株系具有高度抗性。为有效控制该病毒和阐明抗黄矮病机制,采用半定量RT-PCR的方法,研究了大麦黄矮病毒GAV株系在YW642及其感病姊妹系YW641中积累浓度的差异。分别在接种病毒不同时间、不同部位上取样,用半定量RT-PCR的方法来检测GAV的积累浓度。在接种部位,抗病植株中病毒的浓度远远低于感病植株。在侵染的前5d,抗病植株YW642中病毒会有一定程度的复制和积累,但随后病毒浓度开始下降,接种14—16d时没有检测到病毒;而在感病株系中,病毒积累的浓度远远高于抗病植株,并一直维持一个较高的浓度。在未接种部位.感病植株中可检测到较高浓度的病毒,说明病毒能从接种点很快运动到未接种部位,并大量复制。而在抗病系YW642中,未接种部位始终未检测到病毒。实验结果从分子水平上证明,在抗病植株中BYDV的复制和运动均受到了极大的抑制:这是抗病基因Bdv2与BYDV互作后,激活了一系列防御基因的结果。另外还确定了防御基因诱导表达的时间,为从抗病植株中分离抗病相关基因、研究抗黄矮病机制提供了取样的依据。  相似文献   
40.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号