首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   46篇
  国内免费   4篇
  350篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   21篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   9篇
  2008年   11篇
  2007年   14篇
  2006年   13篇
  2005年   22篇
  2004年   20篇
  2003年   15篇
  2002年   21篇
  2001年   15篇
  2000年   13篇
  1999年   9篇
  1998年   12篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   11篇
  1993年   6篇
  1992年   11篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有350条查询结果,搜索用时 15 毫秒
41.
Bacterial cell wall biosynthesis is the target of several antibiotics and is of interest as a target for new inhibitor development. The cytoplasmic steps of this pathway involve a series of uridine diphosphate (UDP)-linked peptidoglycan intermediates. Quantification of these intermediates is essential for studies of current agents targeting this pathway and for the development of new agents targeting this pathway. In this study, a liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed for quantification of these intermediates in Staphylococcus aureus. To address the problem of poor retention of UDP-linked intermediates on reverse phase media, an ion-pairing (IP) approach using N,N-dimethylhexylamine was developed. MS/MS detection in negative mode was optimized for UDP-GlcNAc, UDP-MurNAc, UDP-MurNAc-l-Ala, UDP-MurNAc-l-Ala-d-Glu, UDP-MurNAc-l-Ala-d-Glu-l-Lys, and UDP-MurNAc-l-Ala-d-Glu-l-Lys-d-Ala-d-Ala. The lower limits of quantification (LLOQs) for these analytes were 1.8, 1.0, 0.8, 2.2, 0.6, and 0.5 pmol, respectively, which correspond to LLOQs of 6, 3, 3, 7, 2, and 2 nmol/g bacteria, respectively. This method was demonstrated for quantification of in vivo levels of these intermediates from S. aureus (0.3 mg dry weight analyzed) treated with fosfomycin, d-boroAla, d-cycloserine, and vancomycin. Metabolite accumulation is consistent with the known targets of these antibiotics and indicates potential regulatory loops within this pathway.  相似文献   
42.
A variety of Krebs cycle intermediaries has been shown to possess antioxidant properties in different in vivo and in vitro systems. Here we examined whether citrate, succinate, malate, oxaloacetate, fumarate and alpha-ketoglutarate could modulate malonate-induced thiobarbituric acid-reactive species (TBARS) production in rat brain homogenate. The mechanisms involved in their antioxidant activity were also determined using two analytical methods: 1) a popular spectrophotometric method (Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry 95, 351-358.) and a high performance liquid chromatographic (HPLC) procedure (Grotto, D., Santa Maria, L. D., Boeira, S., Valentini, J., Char?o, M. F., Moro, A. M., Nascimento, P. C., Pomblum, V. J., Garcia, S. C., 2006. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. Journal of Pharmaceutical and Biomedical Analysis 43, 619-624.). Citrate, malate, and oxaloacetate reduced both basal and malonate-induced TBARS production. Their effects were not changed by pre-treatment of rat brain homogenates at 100 degrees C for 10 min. alpha-Ketoglutarate increased basal TBARS without changing malonate-induced TBARS production in fresh and heat-treated homogenates. Succinate reduced basal--without altering malonate-induced TBARS production. Its antioxidant activity was abolished by KCN or heat treatment. Fumarate reduced malonate-induced TBARS production in fresh homogenates; however, its effect was completely abolished by heat treatment. There were minimal differences among the studied methods. Citrate, oxaloacetate, malate, alpha-ketoglutarate and malonate showed iron-chelating activity. We suggest that antioxidant properties of citrate, malate and oxaloacetate were due to their ability to cancel iron redox activity by forming inactive complexes, whereas alpha-ketoglutarate and malonate pro-oxidant activity can be due to formation of active complexes with iron. In contrast, succinate and fumarate antioxidant activity was probably due to some enzymatic system.  相似文献   
43.
The Na+/K+-ATPase is an integral plasma membrane glycoprotein of all animal cells that couples the exchange of intracellular Na+ for extracellular K+ to the hydrolysis of ATP. The asymmetric distribution of Na+ and K+ is essential for cellular life and constitutes the physical basis of a series of fundamental biological phenomena. The pumping mechanism is explained by the Albers–Post model. It involves the presence of gates alternatively exposing Na+/K+-ATPase transport sites to the intracellular and extracellular sides and includes occluded states in which both gates are simultaneously closed. Unlike for K+, information is lacking about Na+-occluded intermediates, as occluded Na+ was only detected in states incapable of performing a catalytic cycle, including two Na+-containing crystallographic structures. The current knowledge is that intracellular Na+ must bind to the transport sites and become occluded upon phosphorylation by ATP to be transported to the extracellular medium. Here, taking advantage of epigallocatechin-3-gallate to instantaneously stabilize native Na+-occluded intermediates, we isolated species with tightly bound Na+ in an enzyme able to perform a catalytic cycle, consistent with a genuine occluded state. We found that Na+ becomes spontaneously occluded in the E1 dephosphorylated form of the Na+/K+-ATPase, exhibiting positive interactions between binding sites. In fact, the addition of ATP does not produce an increase in Na+ occlusion as it would have been expected; on the contrary, occluded Na+ transiently decreases, whereas ATP lasts. These results reveal new properties of E1 intermediates of the Albers–Post model for explaining the Na+ transport pathway.  相似文献   
44.
The time course of absorbance changes following flash photolysis of the fully-reduced carboxycytochrome oxidase fromBacillus PS3 in the presence of O2 has been followed at 445, 550, 605, and 830 nm, and the results have been compared with the corresponding changes in bovine cytochrome oxidase. The PS3 enzyme has a covalently bound cytochromec subunit and the fully-reduced species therefore accommodates five electrons instead of four as in the bovine enzyme. In the bovine enzyme, following CO dissociation, four phases were observed with time constants of about 10 s, 30 s, 100 s, and 1 ms at 445 nm. The initial, 10-s absorbance change at 445 nm is similar in the two enzymes. The subsequent phases involving hemea and CuA are not seen in the PS3 enzyme at 445 nm, because these redox centers are re-reduced by the covalently bound cytochromec, as indicated by absorbance changes at 550 nm. A reaction scheme consistent with the experimental observations is presented. In addition, internal electron-transfer reactions in the absence of O2 were studied following flash-induced CO dissociation from the mixed-valence enzyme. Comparisons of the CO recombination rates in the mixed-valence and fully-reduced oxidases indicate that more electrons were transferred from hemea 3 toa in PS3 oxidase compared to the bovine enzyme.  相似文献   
45.
The folding pathway for a 150-amino acid recombinant form of the dimeric cytokine human macrophage colony-stimulating factor (M-CSF) has been studied. All 14 cysteine residues in the biologically active homodimer are involved in disulfide linkages. The structural characteristics of folding intermediates blocked with iodoacetamide reveal a rapid formation of a small amount of a non-native dimeric intermediate species followed by a slow progression via both monomeric and dimeric intermediates to the native dimer. The transition from monomer to fully folded dimer is complete within 25 h at room temperature at pH 9.0. The blocked intermediates are stable under conditions of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and thus represent various dimeric and folded monomeric species of the protein with different numbers of disulfide bridges. Peptide mapping and electrospray ionization mass spectrometry revealed that a folded monomeric species of M-CSF contained three of the four native disulfide bridges, and this folded monomer also showed some biological activity in a cell-based assay. The results presented here strongly suggest that M-CSF can fold via two different pathways, one involving monomeric intermediates and another involving only dimeric intermediates.  相似文献   
46.
Studies on biological control of aflatoxin production in crops by pre-infection with non-toxigenic Aspergillus flavus strains have created a need for improved methods to screen isolates for aflatoxigenicity. We have evaluated two empirical aflatoxigenicity tests: (i) yellow pigment production, and (ii) the appearance of a plum-red color in colonies exposed to ammonium hydroxide vapor. Yellow pigments from aflatoxigenic A. flavus were shown to function as pH indicator dyes. Seven pigments representing most of the pigmentation in extracts have been isolated using color changes when chromatography spots were exposed to ammonium hydroxide vapor to guide fractionation. Their structures have been shown to be norsolorinic acid, averantin, averufin, versicolorin C, versicolorin A, versicolorin A hemiacetal and nidurufin, all of which are known anthraquinone pigments on, or associated with, the aflatoxin biosynthetic pathway in Aspergillus spp. Thus, the basis of both empirical tests for aflatoxigenicity is detecting production of excess aflatoxin biosynthetic intermediates.  相似文献   
47.
We simulate the aggregation thermodynamics and kinetics of proteins L and G, each of which self-assembles to the same alpha/beta [corrected] topology through distinct folding mechanisms. We find that the aggregation kinetics of both proteins at an experimentally relevant concentration exhibit both fast and slow aggregation pathways, although a greater proportion of protein G aggregation events are slow relative to those of found for protein L. These kinetic differences are correlated with the amount and distribution of intrachain contacts formed in the denatured state ensemble (DSE), or an intermediate state ensemble (ISE) if it exists, as well as the folding timescales of the two proteins. Protein G aggregates more slowly than protein L due to its rapidly formed folding intermediate, which exhibits native intrachain contacts spread across the protein, suggesting that certain early folding intermediates may be selected for by evolution due to their protective role against unwanted aggregation. Protein L shows only localized native structure in the DSE with timescales of folding that are commensurate with the aggregation timescale, leaving it vulnerable to domain swapping or nonnative interactions with other chains that increase the aggregation rate. Folding experiments that characterize the structural signatures of the DSE, ISE, or the transition state ensemble (TSE) under nonaggregating conditions should be able to predict regions where interchain contacts will be made in the aggregate, and to predict slower aggregation rates for proteins with contacts that are dispersed across the fold. Since proteins L and G can both form amyloid fibrils, this work also provides mechanistic and structural insight into the formation of prefibrillar species.  相似文献   
48.
Phosphatidylcholine (PC)-specific phospholipase D (PC-PLD) and phosphatidylcholine (PC)-specific phospholipase C (PC-PLC) activities have been detected in Uronema marinum. Partial purification of PC-PLC revealed that two distinct forms of PC-PLC (named as mPC-PLC and cPC-PLC) were existed in membrane and cytosol fractions. The two PC-PLC enzymes showed the preferential hydrolyzing activity for PC with specific activity of 50.4 for mPC-PLC and 28.3 pmol/min/mg for cPC-PLC, but did not hydrolyze phosphatidylinositol or phosphatidylethanolamine. However, the biochemical characteristics and physiological roles of both enzymes were somewhat different. mPC-PLC had a pH optimum in the acidic region at around, pH 6.0, and required approximately 0.4 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC had a pH optimum in the neutral region at around, pH 7.0, and required 1.6 mM Ca2+ and 2.5 mM Mg2+ for maximal activity. cPC-PLC, but not mPC-PLC, showed a dose-dependent inhibitory effect on the luminal-enhanced chemiluminescence (CL) responses and the viability of zymosan-stimulated phagocytes of olive flounder, indicating that cPC-PLC may contribute to the parasite evasion against the host immune response. Our results suggest that U. marinum contains PC-PLD as well as two enzymatically distinct PC-PLC enzymes, and that mPC-PLC may play a role in the intercellular multiplication of U. marinum and cPC-PLC acts as a virulence factor, serving to actively disrupt the host defense mechanisms.  相似文献   
49.
Fait A  Yellin A  Fromm H 《FEBS letters》2005,579(2):415-420
In plants, succinic semialdehyde dehydrogenase (SSADH)-deficiency results in the accumulation of reactive oxygen intermediates (ROI), necrotic lesions, dwarfism, and hypersensitivity to environmental stresses. We report that Arabidopsis ssadh knockout mutants contain five times the normal level of gamma-hydroxybutyrate (GHB), which in SSADH-deficient mammals accounts for phenotypic abnormalities. Moreover, the level of GHB in Arabidopsis is light dependent. Treatment with gamma-vinyl-gamma-aminobutyrate, a specific gamma-aminobutyrate (GABA)-transaminase inhibitor, prevents the accumulation of ROI and GHB in ssadh mutants, inhibits cell death, and improves growth. These results provide novel evidence for the relationship between the GABA shunt and ROI, which may, in part, explain the phenotype of SSADH-deficient plants and animals.  相似文献   
50.
Protelomerases are enzymes responsible for the generation of closed hairpin ends in linear DNA. It is proposed that they use a breaking-and-rejoin type mechanism to affect DNA rearrangement on specific DNA sequences. In doing so, one strand turns around and becomes the complementary strand. Using the purified enzyme from the Escherichia coli phage N15 and the Klebsiella phage phiKO2 and synthetic oligonucleotide substrates, we directly demonstrate the location where the cutting/re-ligation occurs. We identified a pair of transient staggered cleavages six base-pairs apart centered around the axis of dyad symmetry of the target site. Two molecules of the protelomerase form a pair of protein-linked DNA intermediates at each 3' end of the cleaved openings leaving a 5'-OH. Then, in a process not yet clearly defined, the partners of the two initial openings are exchanged, and the transient breaks are resealed to generate hairpin ends. The formation of 3'-covalent DNA-protein intermediates is a hallmark of the topoisomerase IB type reaction, and we have thus shown experimentally that protelomerase is a member of the tyrosine-recombinase superfamily. In addition, by introducing single nicks in the substrates as perturbation, we found that the integrity of the nucleotide chain 4 bp away from the cutting site as well as this nucleotide's complementary location on the stem if the strands were to fold into a cruciform structure are required for activity, suggesting that these locations may be important substrate-protein contacts. We determined that N15 and phiKO2 protelomerases are monomers in solution and two molecules are needed to interact with the substrate to form two closed hairpin products. The target sites of protelomerases invariably consist of inverted repeats. Comparative studies using the related target sites of different protelomerases suggest that these proteins may require both sequence-specific and structure (possibly cruciform)-specific recognition for activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号