首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   46篇
  国内免费   4篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2020年   5篇
  2019年   7篇
  2018年   6篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   7篇
  2013年   21篇
  2012年   5篇
  2011年   6篇
  2010年   9篇
  2009年   9篇
  2008年   11篇
  2007年   14篇
  2006年   13篇
  2005年   22篇
  2004年   20篇
  2003年   15篇
  2002年   21篇
  2001年   15篇
  2000年   13篇
  1999年   9篇
  1998年   12篇
  1997年   7篇
  1996年   6篇
  1995年   9篇
  1994年   11篇
  1993年   6篇
  1992年   11篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1973年   1篇
排序方式: 共有350条查询结果,搜索用时 570 毫秒
11.
The ability of 2-n-propyl-4-pentenoic acid (Δ4-VPA) and 2-n-propyl-2(E)-pentenoic acid ([E]-Δ2-VPA), two unsaturated metabolites of valproic acid (VPA), to form reactive intermediates, deplete hepatic glutathione (GSH) and cause accumulation of liver triglycerides was investigated in the rat. With the aid of ionspray liquid chromatography-tandem mass spectrometry (LC-MS/MS), three GSH adducts were detected in the bile of Δ4-VPA-treated animals and were identified as 4-hydroxy-5-glutathion-S-yl-VPA-γ-lactone, 5-glutathion-S-yl-(E)-Δ3-VPA and 3-oxo-5-glutathion-S-yl-VPA. A fourth conjugate was identified tentatively as 4-glutathion-S-yl-5-hydroxy-VPA. Quantitative analysis of the corresponding N-acetylcysteine (NAC) conjugates in urine indicated that metabolism of Δ4-VPA via the GSH-dependent pathways accounted for approximately 20% of an acute dose (100 mg kg−1 i.p.). In contrast, when rats were given an equivalent dose of (E)-Δ2-VPA, only one GSH adduct (5-glutathion-S-yl-(E)-Δ3-VPA) was detected at low concentrations in bile. In vitro experiments with rat liver mitochondria demonstrated that Δ4-VPA undergoes coenzyme A- and ATP-dependent metabolic activation in this organelle via the β-oxidation pathway to intermediates which bind covalently to proteins. When liver homogenates and hepatic mitochondria from rats injected with Δ4-VPA, (E)-Δ2-VPA or VPA were analyzed for GSH content, it was found that only Δ4-VPA depleted GSH pools significantly. Treatment of rats with Δ4-VPA and (to a lesser extent) VPA led to an accumulation of liver triglycerides, whereas (E)-Δ2-VPA had no measurable effect. It is concluded that Δ4-VPA undergoes metabolic activation by both microsomal cytochrome P-450-dependent and mitochondrial coenzyme A-dependent processes, and that the resulting electrophilic intermediates, which are trapped in part by GSH, may mediate the hepatotoxic effects of this compound. In contrast, (E)-Δ2-VPA is not transformed to any appreciable extent to reactive metabolites, which thus accounts for the apparent lack of hepatotoxicity of this positional isomer in the rat.  相似文献   
12.
To assess the respective roles of local and long-range interactions during protein folding, the influence of the native disulfide bonds on the early formation of secondary structure was investigated using continuous-flow circular dichroism. Within the first 4 ms of folding, lysozyme with intact disulfide bonds already had a far-UV CD spectrum reflecting large amounts of secondary structure. Conversely, reduced lysozyme remained essentially unfolded at this early folding time. Thus, native disulfide bonds not only stabilize the cfinal conformation of lysozyme but also provide, in early folding intermediates, the necessary stabilization that favors the formation of secondary structure.  相似文献   
13.
Staphylococcal nuclease, at low pH and in the presence of high salt concentrations, has previously been proposed to exist in a partially folded or molten globule form called the "A-state" (Fink et al., 1993, Protein Sci 2:1155-1160). We have found that the A-state of nuclease at pH 2.1 in the presence of moderate to high salt concentrations and at low temperature exists in a substantially folded form structurally more similar to a native state. The A-state has the far-UV circular dichroism spectra characteristic of the native protein, which indicates that it has a large degree of secondary structure. Upon heating, the A-state denatures with a sigmoidal change in far-UV ellipticity and an observable peak in a differential scanning calorimeter trace, indicating that it is thermodynamically distinct from the denatured state. Three different mutations in a residue normally buried in the protein's core stabilize or destabilize the A-state in the same way as they affect the denaturation of the native state. The A-state must, therefore, contain at least some tertiary packing of side chains. Unlike the native state, which shows cold denaturation at low temperatures, the A-state is most stable at temperatures below 0 degrees C.  相似文献   
14.
The folding pathway for a 150-amino acid recombinant form of the dimeric cytokine human macrophage colony-stimulating factor (M-CSF) has been studied. All 14 cysteine residues in the biologically active homodimer are involved in disulfide linkages. The structural characteristics of folding intermediates blocked with iodoacetamide reveal a rapid formation of a small amount of a non-native dimeric intermediate species followed by a slow progression via both monomeric and dimeric intermediates to the native dimer. The transition from monomer to fully folded dimer is complete within 25 h at room temperature at pH 9.0. The blocked intermediates are stable under conditions of sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and thus represent various dimeric and folded monomeric species of the protein with different numbers of disulfide bridges. Peptide mapping and electrospray ionization mass spectrometry revealed that a folded monomeric species of M-CSF contained three of the four native disulfide bridges, and this folded monomer also showed some biological activity in a cell-based assay. The results presented here strongly suggest that M-CSF can fold via two different pathways, one involving monomeric intermediates and another involving only dimeric intermediates.  相似文献   
15.
Certain partly ordered protein conformations, commonly called “moltenglobule states,” are widely believed to represent protein folding intermediates. Recentstructural studies of molten globule states ofdifferent proteins have revealed features whichappear to be general in scope. The emergingconsensus is that these partly ordered forms exhibit a high content of secondary structure, considerable compactness, nonspecific tertiary structure, and significant structural flexibility. These characteristics may be used to define ageneral state of protein folding called “the molten globule state,” which is structurally andthermodynamically distinct from both the native state and the denatured state. Despite exaatensive knowledge of structural features of afew molten globule states, a cogent thermodynamic argument for their stability has not yetbeen advanced. The prevailing opinion of thelast decade was that there is little or no enthalpy difference or heat capacity differencebetween the molten globule state and the unfolded state. This view, however, appears to beat variance with the existing database of protein structural energetics and with recent estimates of the energetics of denaturation of α-lactalbumin, cytochrome c, apomyoglobin, and T4 lysozyme. We discuss these four proteins at length. The results of structural studies, together with the existing thermodynamic values for fundamental interactions in proteins, provide the foundation for a structural thermodynamic framework which can account for the observed behavior of molten globule states. Within this framework, we analyze the physical basis for both the high stability of several molten globule states and the low probability of other protential folding intermediates. Additionally, we consider, in terms of reduced enthalpy changes and disrupted cooperative interactions, the thermodynamic basis for the apparent absence of a thermally induced, cooperative unfolding transition for some molten globule states. © 1993 Wiley-Liss, Inc.  相似文献   
16.
By considering the denatured state of a protein as an ensemble of conformations with varying numbers of sequence-specific interactions, the effects on stability, folding kinetics, and aggregation of perturbing these interactions can be predicted from changes in the molecular partition function. From general considerations, the following conclusions are drawn: (1) A perturbation that enhances a native interaction in denatured state conformations always increases the stability of the native state. (2) A perturbation that promotes a non-native interaction in the denatured state always decreases the stability of the native state. (3) A change in the denatured state ensemble can alter the kinetics of aggregation and folding. (4) The loss (or increase) in stability accompanying two mutations, each of which lowers (or raises) the free energy of the denatured state, will be less than the sum of the effects of the single mutations, except in cases where both mutations affect the same set of partially folded conformations. By modeling the denatured state as the ensemble of all non-native conformations of hydrophobic-polar (HP) chains configured on a square lattice, it can be shown that the stabilization obtained from enhancement of native interactions derives in large measure from the avoidance of non-native interactions in the D state. In addition, the kinetic effects of fixing single native contacts in the denatured state or imposing linear gradients in the HH contact probabilities are found, for some sequences, to significantly enhance the efficiency of folding by a simple hydrophobic zippering algorithm. Again, the dominant mechanism appears to be avoidance of non-native interactions. These results suggest stabilization of native interactions and imposition of gradients in the stability of local structure are two plausible mechanisms involving the denatured state that could play a role in the evolution of protein folding and stability.  相似文献   
17.
Abstract: This laboratory has previously reported that the maternal opioid analgesia associated with pregnancy and parturition is mediated, at least in part, by a maternal spinal cord dynorphin/κ opioid system. This analgesia is accompanied by an increase in dynorphin peptides (1–17 and 1–8) in the lumbar spinal cord. Levels of trypsin-generated arginine6-leucine-enkephalin (Leu-Enk-Arg)-immunoreactive determinants were also determined and used to reflect the content of dynorphin precursor intermediates. In spinal tissue, the amount of dynorphin A (1–17) contained in the form of precursor is, at a minimum, 10-fold higher than the content of mature dynorphin A (1–17) or dynorphin (1–8). During gestational day 22, the content of dynorphin precursor is reduced significantly (∼50%). The decline in the magnitude of dynorphin precursor intermediates in the spinal cord of pregnant rats vastly exceeds the magnitude of increase in the content of dynorphin peptides (1–17 and 1–8). This difference can best be explained by postulating a corresponding increase in the rate of release of spinal cord dynorphin (1–17). It is suggested that enhanced processing of dynorphin precursor intermediates represents the initial biochemical level of adaptation of spinal dynorphin neurons to increased demands of pregnancy.  相似文献   
18.
This discussion, prepared for the Protein Society's symposium honoring the 100th anniversary of Kaj Linderstrøm-Lang, shows how hydrogen exchange approaches initially conceived and implemented by Lang and his colleagues some 50 years ago are contributing to current progress in structural biology. Examples are chosen from the active protein folding field. Hydrogen exchange methods now make it possible to define the structure of protein folding intermediates in various contexts: as tenuous molten globule forms at equilibrium under destabilizing conditions, in kinetic intermediates that exist for less than one second, and as infinitesimally populated excited state forms under native conditions. More generally, similar methods now find broad application in studies of protein structure, energetics, and interactions. This article considers the rise of these capabilities from their inception at the Carlsberg Labs to their contemporary role as a significant tool of modern structural biology.  相似文献   
19.
The partitioning of partially folded polypeptide chains between correctly folded native states and off-pathway inclusion bodies is a critical reaction in biotechnology. Multimeric partially folded intermediates, representing early stages of the aggregation pathway for the P22 tailspike protein, have been trapped in the cold and isolated by nondenaturing polyacrylamide gel electrophoresis (PAGE) (speed MA, Wang DIC, King J. 1995. Protein Sci 4:900-908). Monoclonal antibodies against tailspike chains discriminate between folding intermediates and native states (Friguet B, Djavadi-Ohaniance L, King J, Goldberg ME. 1994. J Biol Chem 269:15945-15949). Here we describe a nondenaturing Western blot procedure to probe the conformation of productive folding intermediates and off-pathway aggregation intermediates. The aggregation intermediates displayed epitopes in common with productive folding intermediates but were not recognized by antibodies against native epitopes. The nonnative epitope on the folding and aggregation intermediates was located on the partially folded N-terminus, indicating that the N-terminus remained accessible and nonnative in the aggregated state. Antibodies against native epitopes blocked folding, but the monoclonal directed against the N-terminal epitope did not, indicating that the conformation of the N-terminus is not a key determinant of the productive folding and chain association pathway.  相似文献   
20.
A method is described to objectively identify hydrophobic clusters in proteins of known structure. Clusters are found by examining a protein for compact groupings of side chains. Compact clusters contain seven or more residues, have an average of 65% hydrophobic residues, and usually occur in protein interiors. Although smaller clusters contain only side-chain moieties, larger clusters enclose significant portions of the peptide backbone in regular secondary structure. These clusters agree well with hydrophobic regions assigned by more intuitive methods and many larger clusters correlate with protein domains. These results are in striking contrast with the clustering algorithm of J. Heringa and P. Argos (1991, J Mol Biol 220:151-171). That method finds that clusters located on a protein's surface are not especially hydrophobic and average only 3-4 residues in size. Hydrophobic clusters can be correlated with experimental evidence on early folding intermediates. This correlation is optimized when clusters with less than nine hydrophobic residues are removed from the data set. This suggests that hydrophobic clusters are important in the folding process only if they have enough hydrophobic residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号