首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   831篇
  免费   139篇
  国内免费   2篇
  2024年   2篇
  2023年   16篇
  2022年   12篇
  2021年   17篇
  2020年   39篇
  2019年   48篇
  2018年   26篇
  2017年   49篇
  2016年   39篇
  2015年   60篇
  2014年   59篇
  2013年   61篇
  2012年   49篇
  2011年   57篇
  2010年   50篇
  2009年   70篇
  2008年   54篇
  2007年   46篇
  2006年   39篇
  2005年   32篇
  2004年   18篇
  2003年   26篇
  2002年   21篇
  2001年   12篇
  2000年   13篇
  1999年   14篇
  1998年   12篇
  1997年   4篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   7篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1981年   2篇
排序方式: 共有972条查询结果,搜索用时 15 毫秒
51.
Pleistocene glacial cycles undoubtedly altered the evolutionary trajectories of many taxa, yet few studies have examined the impact of such events on genetic differentiation and phylogeography at large geographic scales. Here we present the results of a circumarctic survey of mitochondrial DNA diversity in members of the Daphnia pulex complex. The analysis involved the survey of restriction site polymorphisms in a 2100-bp fragment of the NADH-4 (ND4) and NADH-5 (ND5) genes for 276 populations representing the two major groups (tenebrosa and pulicaria) in this complex across their Holarctic range. A comparison of the distribution patterns for seven clades in this complex revealed very clear phylogeographic structuring. Most notably, pulicaria group lineages were restricted primarily to the Nearctic, with some colonization of formerly glaciated portions of northern Europe. This group was not detected from vast expanses of northern Eurasia, including the Beringian glacial refuge. In contrast, tenebrosa group haplotypes showed considerable intercontinental divergence between Eurasian and North American lineages, but were absent from Greenland and Iceland, as well as the Canadian arctic archipelago. Dispersal in Eurasia was primarily in a westerly direction from Beringia, whereas dispersal in the Nearctic followed proglacial drainage patterns. Long-distance dispersal of certain lineages was observed in both groups, and variation in haplotype richness and nucleotide diversity allowed us to make inferences about the positioning of putative glacial refugia. Overall, the phylogeographic pattern of diversification in this arctic complex is characterized by the apparently unique postglacial histories for each clade, indicating that even closely allied taxa can respond independently to the allopatric effects of glacial cycles. This is in sharp contrast to other phylogeographic studies of species assemblages from more southern (unglaciated) latitudes, which are often characterized by concordant patterns.  相似文献   
52.
Aim  In order to look for a possible centre of survival for the Norway spruce ( Picea abies Karst.) in the south-western Alps, six natural populations of this area were investigated by means of genetic markers in order to assess the degree and the distribution of genetic diversity within the species.
Location  Western and South-western Alps.
Methods  Populations were genotyped using seven simple sequence repeat (SSR) markers. Basic population genetics parameters were estimated and the amount of genetic differentiation calculated.
Results  A large amount of variability was found (0.59 <  H e < 0.67); genetic differentiation as measured by F ST was 0.05, close to other similar studies; no isolation by distance was detected by a Mantel test. Analysis of molecular variance confirmed a high degree of variability within populations and a low degree of variability among populations. Finally, the number of populations from which those observed could have arisen was estimated by Bayesian analysis.
Main conclusions  The results presented here suggest that the present populations derive their genetic make-up from three inferred clusters. The possible existence in this area of a relict/refuge population during the last glaciation is discussed.  相似文献   
53.
Aim It has been proposed that the root vole subspecies, Microtus oeconomus finmarchicus, survived the last glacial period on islands on the north‐west coast of Norway. The Norwegian island of Andøya may have constituted the only site with permanent ice‐free conditions. Geological surveys and fossil finds from Andøya demonstrate that survival throughout the last glacial maximum was probably possible for some plants and animals. In this study we aim to infer the recent evolutionary history of Norwegian root vole populations and to evaluate the glacial survival hypothesis. Methods DNA sequence variation in the mitochondrial cytochrome b gene was studied in 46 root voles from 19 localities. Location Northern Fennoscandia and north‐west Russia with a focus on islands on the north‐west coast of Norway. Results The phylogeographical analyses revealed two North European phylogroups labelled ‘Andøya’ and ‘Fennoscandia’. The Andøya phylogroup contained root voles from the Norwegian islands of Andøya, Ringvassøya and Reinøya and two localities in north‐west Russia. The Fennoscandian phylogroup encompassed root voles from the three Norwegian islands of Kvaløya, Håkøya and Arnøya and the remaining specimens from Norway, northern Sweden and Finland. Nucleotide diversity within the Andøya and Fennoscandian phylogroups was similar, ranging from 0.5% to 0.7%. Main conclusions Both our genetic data and previously published morphological data are consistent with in situ glacial survival of root voles on Andøya during the last glacial maximum. However, the level of genetic diversity observed in the extant island populations, the past periods of severe climatic conditions on Andøya and the ecology of the root vole are somewhat difficult to reconcile with this model. A biogeographical scenario involving late glacial recolonization along the northern coasts of Russia and Norway therefore represents a viable alternative. Our results demonstrate that complex recolonization and extinction histories can generate intricate phylogeographical patterns and relatively high levels of genetic variation in northern populations.  相似文献   
54.
The repeated advance and retreat of glaciers during the Pleistocene ice ages have played a major role in shaping the present patterns of genetic variation within and among plant and animal populations of the temperate zone. In Europe, the geographic ranges of many species were confined to a few, mostly southern refugia during periods of full glaciation. Distribution ranges then reexpanded, and uninhabited northern areas were recolonized during the interglacials. These contraction–expansion cycles were repeated at least four times. Paleontological and molecular phylogeographic studies during the last decade have greatly increased our knowledge of refugial areas and postglacial recolonization patterns of European trees, shrubs and Alpine plants since the last glacial maximum about 20,000 years ago. Much less is known yet about non-Alpine herbaceous plants. In the present review, we summarize recent phylogeographic work on halophytic (salt-adapted) plants from coastal and inland habitats in Europe. Major refugial areas for these plants have been identified along the Mediterranean coasts, but some species could also have survived in saline inland localities. In general, recolonization of N and NW Europe occurred in a stepwise fashion along the Atlantic coastline. For a number of species, molecular studies revealed concordant genetic discontinuities on the background of an essentially continuous geographic distribution. Such congruency could be explained by the preferential seed dispersal through sea currents. However, phylogeographic patterns of halophytes also proved to be influenced by other factors like sea-level fluctuations during the Pleistocene, secondary contact between divergent lineages, long-distance dispersal, clonal growth, and special habitat and temperature requirements.  相似文献   
55.
The cotton bollworm, Helicoverpa armigera, is one of the most important insect pests in cotton growing regions of China. Transgenic cotton that expresses a gene derived from the bacterium Bacillus thuringiensis (Bt) has been deployed for combating cotton bollworm since 1997. Natural refugees derived from the mixed planting system consisting of cotton, corn, soybean, vegetables, peanut and others on single-family farms of a small scale were used for delaying the evolution of resistance to Bt cotton. Susceptibility of H. armigera field populations to the Bt insecticidal protein Cry1Ac was monitored from 1997 to 2006. The results indicate that the field populations are still susceptible to Cry1Ac, and monitoring indication no apparent shifts in susceptibility in field populations of this important pest.  相似文献   
56.
The distribution of genetic variability across a species' range can provide valuable insights into colonization history. To assess the relative importance of European and Asian refugia in shaping current levels of genetic variation in the greater horseshoe bats, we applied a microsatellite-based approach to data collected from 56 localities ranging from the UK to Japan. A decline in allelic richness from west Asia to the UK and analyses of F(ST) both imply a northwestward colonization across Europe. However, sharp discontinuities in gene frequencies within Europe and between the Balkans and west Asia (Syria/Russia) are consistent with suture zones following expansion from multiple refugia, and a lack of recent gene flow from Asia Minor. Together, these results suggest European populations originated from west Asia in the ancient past, and experienced a more recent range expansion since the Last Glacial Maximum. Current populations in central Europe appear to originate from the Balkans and those from west Europe from either Iberia and/or Italy. Comparisons of R(ST )and F(ST) suggest that stepwise mutation has contributed to differentiation between island and continental populations (France/UK and China/Japan) and also among distant samples. However, pairwise R(ST) values between distant populations appear to be unreliable, probably due to size homoplasy. Our findings also highlight two priorities for conservation. First, stronger genetic subdivision within the UK than across 4000 km of continental Eurasia is most likely the result of population fragmentation and highlights the need to maintain gene flow in this species. Second, deep splits within China and between Europe and China are indicative of cryptic taxonomic divisions which need further investigation.  相似文献   
57.
Research investigating the geographical context of speciation has primarily focused on abiotic factors such as the role of Pleistocene glacial cycles, or geotectonic events. Few study systems allow a direct comparison of how biological differences, such as dispersal behaviour, affect population genetic structure of organisms that were subdivided during the Pleistocene. Mormon crickets exist in solitary and gregarious 'phases', which broadly correspond with an east-west mtDNA division across the Rocky Mountains. Gregarious individuals form bands that can move up to 2 km daily. This study assessed whether population genetic structure results mainly from deep Pleistocene vicariance or if we can also detect more recent genetic patterns due to phase and dispersal differences superimposed on the older, deeper divisions. We found that separation in refugia was a more important influence on genetic divergence than phase, with the Rockies acting as a barrier that separated Mormon cricket populations into eastern and western refugia during Pleistocene glacial cycles. However, patterns of isolation by distance differ between eastern and western clades for both mitochondrial and nuclear DNA, with greater divergence within the eastern, solitary clade. An mtDNA haplotype mismatch distribution is compatible with historical population expansion in the western clade but not in the eastern clade. A persistent (and possibly sex-biased) difference in dispersal ability has most likely influenced the greater population genetic structure seen in the eastern clade, emphasizing the importance of the interaction of Quaternary climate fluctuations and geography with biotic factors in producing the patterns of genetic subdivision observed today.  相似文献   
58.
For decades, palynologists working in tropical South America are using the genus Podocarpus as a climate indicator although without referring to any modern data concerning its distribution and limiting factors. With the aim to characterize the modern and past distribution of the southern conifer Podocarpus in Brazil and to obtain new information on the distribution of the Atlantic rainforest during the Quaternary, we examined herbarium data to locate the populations of three Brazilian endemic Podocarpus species: P. sellowii, P. lambertii , and P. brasiliensis , and extracted DNA from fresh leaves from 26 populations. Our conclusions are drawn in the light of the combination of these three disciplines: botany, palynology, and genetics. We find that the modern distribution of endemic Podocarpus populations shows that they are widely dispersed in eastern Brazil, from north to south and reveals that the expansion of Podocarpus recorded in single Amazonian pollen records may have come from either western or eastern populations. Genetic analysis enabled us to delimit regional expansion: between 5° and 15° S grouping northern and central populations of P. sellowii expanded c . 16,000 years ago; between 15° and 23° S populations of either P. lambertii or sellowii expanded at different times since at least the last glaciation; and between 23° and 30° S, P. lambertii appeared during the recent expansion of the Araucaria forest. The combination of botany, pollen, and molecular analysis proved to be a rapid tool for inferring distribution borders for sparse populations and their regional evolution within tropical ecosystems. Today the refugia of rainforest communities we identified are crucial hotspots to allow the Atlantic forest to survive under unfavourable climatic conditions and, as such, offer the only possible opportunity for this type of forest to expand in the event of a future climate change.  相似文献   
59.
基于叶绿体微卫星研究鄂报春谱系遗传结构   总被引:2,自引:0,他引:2  
鄂报春Primula obconica作为一种广泛栽培的园艺植物,其野生居群的遗传多样性及遗传结构的研究还少见报道。本文通过叶绿体微卫星分析了17个鄂报春野生居群(共278个个体),共发现4个多态性位点(16个等位基因),得到14个单倍型。结果表明鄂报春具有很高的总基因多样性(HT=0.971)和极低的居群内基因多样性(HS=0.028);分子方差分析(AMOVA)显示98%的变异存在于居群间。这些结果说明早期的生境片断化及有限的种子传播能力是造成当前遗传结构的重要原因。Nst值显著大于Gst值,表明关系相近的单倍型会出现在相同的地区内,同时最小生成树(MST)的分析结果证实了这样的结论。我们在最小生成树的两个组中推断出一些古老单倍型,并推测在冰期时湖北和我国的西南地区可能是该物种的避难所。  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号