首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   687篇
  免费   93篇
  国内免费   14篇
  794篇
  2024年   5篇
  2023年   19篇
  2022年   21篇
  2021年   30篇
  2020年   19篇
  2019年   31篇
  2018年   21篇
  2017年   34篇
  2016年   30篇
  2015年   27篇
  2014年   43篇
  2013年   63篇
  2012年   24篇
  2011年   25篇
  2010年   37篇
  2009年   28篇
  2008年   34篇
  2007年   26篇
  2006年   15篇
  2005年   28篇
  2004年   24篇
  2003年   23篇
  2002年   39篇
  2001年   14篇
  2000年   15篇
  1999年   11篇
  1998年   11篇
  1997年   14篇
  1996年   20篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   6篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有794条查询结果,搜索用时 8 毫秒
21.
BackgroundHandwriting is a fundamental skill needed for the development of daily-life activities during lifetime and can be performed using different forms to hold the writing object. In this study, we monitored the sEMG activity of trapezius, biceps brachii, extensor carpi radialis brevis and flexor digitorum superficialis during a handwriting task with two groups of subjects using different grasp patterns.Subjects and methodsTwenty-four university students (thirteen males and eleven females; mean age of 22.04 ± 2.8 years) were included in this study. We randomly invited 12 subjects that used the Dynamic Tripod grasp and 12 subjects that used the Static Tripod grasp.ResultsThe static tripod group showed statistically significant changes in the sEMG activity of trapezium and biceps brachii muscles during handwriting when compared to dynamic tripod group’s subjects. No significant differences were found in extensor carpi radialis brevis and flexor digitorum superficialis activities among the two groups.ConclusionThe findings in this study suggest an increased activity of proximal muscles among subjects using a transitional grasp, indicating potential higher energy expenditure and muscular harm with the maintenance of this motor pattern in handwriting tasks, especially during the progression in academic life.  相似文献   
22.

The shrimp Penaeus chinensis at moult stage Do were subjected to one of the three following treatments: bilateral eyestalk ablation, amputation of the fifth pair of pereiopods, and both of the above treatments. Two consecutive ecdyses after treatments were followed. Intact animals served as control. Precocious moulting was exhibited in all treated groups. Eyestalk ablation shortened the time to the first ecdysis more than does limb amputation. Additive effect was found in shrimps receiving both treatments. The duration between the first and second ecdyses in treated shrimps was shorter than that of intact animals, but the durations in the three treated groups were not significantly different from one another. Regenerates of limbs appeared after the second ecdysis following limb amputation. Further, change of body colour from black and green to red and white was observed in shrimps with eyestalk ablation.  相似文献   
23.
Traditional muscle paths (the straight-line model and the viapoint-line model) emphasise either the mechanical properties that arouse joint movement or the morphological characteristics of the muscles. To consider both the factors, a muscle-path-plane (MPP) method is introduced to model the paths of muscles during joint movement. This method is based on the premise that there is a MPP, constructed by origin, insertion and MPP control point, which represents the major direction of the muscle contraction for an arbitrary joint configuration at any time. Then, we can calculate the functions and the lengths of the muscle paths during instantaneous joint movement in MPP by mathematical approaches. Taking the triceps brachii as an example, the lengths of its paths during elbow flexion are calculated and compared with the relative studies reported in the literature. It is concluded that this method can provide an insight into the simulation of the muscle contraction.  相似文献   
24.
25.
26.
27.
Purinergic pathways are considered important in pain transmission, and P2X receptors are a key part of this system which has received little attention in the horse. The aim of this study was to identify and characterise the distribution of P2X receptor subtypes in the equine digit and associated vasculature and nervous tissue, including peripheral nerves, dorsal root ganglia and cervical spinal cord, using PCR, Western blot analysis and immunohistochemistry. mRNA signal for most of the tested P2X receptor subunits (P2X1–5, 7) was detected in all sampled equine tissues, whereas P2X6 receptor subunit was predominantly expressed in the dorsal root ganglia and spinal cord. Western blot analysis validated the specificity of P2X1–3, 7 antibodies, and these were used in immunohistochemistry studies. P2X1–3, 7 receptor subunits were found in smooth muscle cells in the palmar digital artery and vein with the exception of the P2X3 subunit that was present only in the vein. However, endothelial cells in the palmar digital artery and vein were positive only for P2X2 and P2X3 receptor subunits. Neurons and nerve fibres in the peripheral and central nervous system were positive for P2X1–3 receptor subunits, whereas glial cells were positive for P2X7 and P2X1 and 2 receptor subunits. This previously unreported distribution of P2X subtypes may suggest important tissue specific roles in physiological and pathological processes.  相似文献   
28.
Studies of primate taxonomy and phylogeny often depend on comparisons of limb dimensions, yet there is little information on how morphology correlates and contributes to foraging strategies and ecology. Callitrichid primates are ideal for comparative studies as they exhibit a range of body size, limb proportions and diet. Many callitrichid species exhibit a high degree of exudativory, and to efficiently exploit these resources, they are assumed to have evolved morphologies that reflect a level of dependence on these resources. We tested assumptions by considering measurements of limb proportion and frictional features of the volar surfaces in preserved specimens of 25 species with relation to published life history and ecological data. The degree of exudativory and utilization of vertical substrates during foraging were found to correlate both with size and with size‐corrected foot and hand dimensions. Smaller species, which engage in greater degrees of exudativory, had proportionally longer hands and feet and more curved claw‐like tegulae (nails) on their digits to facilitate climbing on vertical substrates. The density of patterned ridges (dermatoglyphs) on the volar surfaces of the hands and feet is higher in more exudativorous genera, suggesting a role in climbing on vertical tree trunks during foraging. Dermatoglyph comparisons suggest that ridges on the soles and palms may facilitate food procurement by enhancing frictional grip during exudate feeding. Volar pad features corroborate taxonomic relationships described from dental morphology. Am J Phys Anthropol 152:447–458, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
29.
Several Cl channels have been described in the native renal tubule, but their correspondence with ClC-K1 and ClC-K2 channels (orthologs of human ClC-Ka and ClC-Kb), which play a major role in transcellular Cl absorption in the kidney, has yet to be established. This is partly because investigation of heterologous expression has involved rat or human ClC-K models, whereas characterization of the native renal tubule has been done in mice. Here, we investigate the electrophysiological properties of mouse ClC-K1 channels heterologously expressed in Xenopus laevis oocytes and in HEK293 cells with or without their accessory Barttin subunit. Current amplitudes and plasma membrane insertion of mouse ClC-K1 were enhanced by Barttin. External basic pH or elevated calcium stimulated currents followed the anion permeability sequence Cl > Br > NO3 > I. Single-channel recordings revealed a unit conductance of ~ 40 pS. Channel activity in cell-attached patches increased with membrane depolarization (voltage for half-maximal activation: ~ − 65 mV). Insertion of the V166E mutation, which introduces a glutamate in mouse ClC-K1, which is crucial for channel gating, reduced the unit conductance to ~ 20 pS. This mutation shifted the depolarizing voltage for half-maximal channel activation to ~ + 25 mV. The unit conductance and voltage dependence of wild-type and V166E ClC-K1 were not affected by Barttin. Owing to their strikingly similar properties, we propose that the ClC-K1/Barttin complex is the molecular substrate of a chloride channel previously detected in the mouse thick ascending limb (Paulais et al., J Membr. Biol, 1990, 113:253–260).  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号