首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94554篇
  免费   6492篇
  国内免费   4415篇
  105461篇
  2024年   203篇
  2023年   1469篇
  2022年   2166篇
  2021年   2917篇
  2020年   2963篇
  2019年   4015篇
  2018年   3419篇
  2017年   2615篇
  2016年   2583篇
  2015年   3149篇
  2014年   5623篇
  2013年   7074篇
  2012年   4314篇
  2011年   5546篇
  2010年   4256篇
  2009年   4834篇
  2008年   4943篇
  2007年   5081篇
  2006年   4545篇
  2005年   4009篇
  2004年   3538篇
  2003年   2945篇
  2002年   2715篇
  2001年   1890篇
  2000年   1576篇
  1999年   1572篇
  1998年   1549篇
  1997年   1274篇
  1996年   1242篇
  1995年   1089篇
  1994年   1001篇
  1993年   919篇
  1992年   849篇
  1991年   760篇
  1990年   630篇
  1989年   519篇
  1988年   491篇
  1987年   428篇
  1986年   368篇
  1985年   527篇
  1984年   722篇
  1983年   487篇
  1982年   543篇
  1981年   428篇
  1980年   336篇
  1979年   290篇
  1978年   261篇
  1977年   189篇
  1976年   158篇
  1975年   132篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
Plant hormone response mutants   总被引:4,自引:0,他引:4  
A variety of plant hormone response mutants has now been described, and is surveyed in this article. In addition to hormone-insensitive mutant phenotypes with defects in hormone-related features, there exist mutants apparently constitutive for the gibberellin responses, and also a mutant hyper-responsive to gibberellin. Although there is still little biochemical evidence on the nature of these mutants, the emerging picture of their genetic dominance relationships has given rise to tentative suggestions of the involvement of represser functions in hormonal control systems.  相似文献   
142.
Ganglioside Composition of Normal and Mutant Mouse Embryos   总被引:2,自引:0,他引:2  
The enrichment of gangliosides in neuronal membranes suggests that they play an important role in CNS development. We recently found a marked tetrasialoganglioside deficiency in twl/twl mutant mouse embryos at embryonic day (E)-11. The recessive twl/twl mutants die at embryonic ages E-9 to E-18 from failed neural differentiation in the ventral portion of the neural tube. In the present study, we examined the composition and distribution of gangliosides in twl/twl mutant mouse embryos at E-12. The total ganglioside sialic acid concentration was significantly lower in the mutants than in normal (+/-) embryos. The mutants also expressed significant deficiencies of gangliosides in the "b" metabolic pathway (GD3, GD1b, GT1b, and GQ1b) and elevations in levels of gangliosides in the "a" metabolic pathway (GM3, GM2, GM1, and GD1a). These findings suggest that the mutants have a partial deficiency in the activity of a specific sialyltransferase in the b pathway. Regional ganglioside distribution was also studied in E-12 normal mouse embryos. The ganglioside composition in heads and bodies was similar to each other and to whole embryos. Total ganglioside concentration and the distribution of b pathway gangliosides were significantly higher in neural tube regions than in nonneural tube regions. These findings suggest that b pathway gangliosides accumulate in differentiating neural cells and that the deficiency of these gangliosides in the twl/twl mutants is closely associated with failed neural differentiation.  相似文献   
143.
Thymocyte growth peptide (TGP) initiates DNA synthesis in immature thymocytes and has previously been characterized as an acidic peptide isolated from calf thymus. We now report the isolation of TGP from sheep thymus and show it to be a nonapeptide with a large N-terminal blocking moiety characterized by high UV absorbance. The amino acid composition is identical to FTS, consisting of 2 Gly, 2 Ser, 2 Glx, 1 Ala, 1 Lys, 1 Asx. In contrast to FTS, TGP is acidic with an apparent isoelectric point of 4.2 and a high UV absorbance at 270–280 nm. Reverse phase chromatography of TGP at an acidic pH results in a change of the molecule and the appearance of two new compounds TGP-A and TGP-B, both with less than 50% of the original TGP activity. Full activity could be restored by the addition of ZnCl2 to TGP-A. Both TGP-A and B have some amino acid composition and high UV absorbance as native TGP. We propose that TGP consists of a non-peptide moiety bound to the N-terminal of the nonapeptide Glu-Ala-Lys-Ser-Gln-Gly-Gly-Ser-Asn and that the active molecule is stabilized by Zn2+.  相似文献   
144.
Summary Then-acetyl-d-glucosamine-1-phosphate: dolichol phosphate transferase fromArtemia has been partially purified and characterized. The enzyme is solubilized from crude microsomes using Triton X-100, and after detergent removal appears to be associated with phospholipids. Using dolichol phosphate and UDP-n-acetyl-d-glucosamine as substrates, the enzyme catalyzes the formation of dolichol-pyrophosphate-n-acetyl-d-glucosamine. the product identity has been verified by TLC and paper chromatography following mild acid hydrolysis. Under the incubation conditions used only one product is made, i.e., Dol-p-p-GlcNAc. The formation of product is linear with increasing amounts of added protein and with time of incubation. The enzyme requires magnesium ions for activity. Activity of the enzyme is stimulated 6-fold by exogenous dolichol phosphate and is also stimulated by added phospholipids, with optimal activity being obtained in the presence of mixtures of phosphatidylcholine and phosphatidylglycerol. Enzymatic activity is not increased upon addition of GDP-mannose or dolichol phosphate mannose. The enzyme is rapidly inactivated by exposure to several detergents, including Triton X-100 and deoxycholate. The activity is inhibited by tunicamycin and by the purified B2 homologue of this antibiotic. Other antibiotic inhibitors such as diumycin and polyoxin D have little effect on the enzyme. Both the microsomal and solubilized enzyme preparations are inactivated by 70% upon treatment with phospholipase A2; activity may be restored by addition of phospholipids. Following hydrophobic interaction chromatography on Phenyl Sepharose, gel filtration chromatography on Sepharose CL-4B indicated that the enzyme, purified 81-fold, contained phophatidylcholine and phosphatidyl-ethanolamine.Abbreviations SDS sodium dodecyl sulfate - PMSF phenyl methanesulfonylfluoride - HEPES 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid - GlcNAc N-acetyl-d-glucosamine - Dol-PP-GlcNAc dolichol pyrophosphate N-acetyl-d-glucosamine - Dol-P-man dolichol-phosphate-mannose - Dol-PP- (GlcNAc)2 dolichol-pyrophosphate-di-N- acetylchitobiose - DMSO dimethylsulfoxide - C:M (2:1) chloroform:methanol (2:1) - C:M:W (10:10:3) chloroform:methanol:water (10:10:3) - GlcNAc-1-P N-acetyl-d-glucosamine-1-phosphate - Dol-P dolichol phosphate - EGTA ethylene glycol bis (b-aminoethyl ether)-NNNN tetraacetic acid  相似文献   
145.
Density-induced down regulation of epidermal growth factor receptors   总被引:4,自引:0,他引:4  
Summary Previous studies have shown that cell density can regulate the binding of several growth factors. To determine whether cell density exerts a uniform effect on the expression of epidermal growth factor (EGF) receptors, seven cell lines were examined in detail. For each cell line, EGF binding was found to decrease as cell density increases. Scatchard analysis of the binding data reveals that decreases in EGF binding are due to reductions in the number of cell surface EGF receptors. The only apparent exception is the effect of cell density on the binding of EGF to A-431 cells. For these cells, increases in cell density lead to two effects: decreases in the number of high affinity EGF receptors and increases in the total number of EGF receptors. In addition to the effects of cell density on EGF receptors, it was determined that increases in cell density can coordinately down-regulate receptors for as many as four different growth factors. Overall, the findings described in this report for EGF and those previously described for transforming growth factor type-β (TGF-β) and fibroblast growth factor (FGF) demonstrate the existence of a common mechanism for down-regulating growth factor receptors. This work was supported by grants from the Nebraska Department of Health (89-51), the National Cancer Institute (Laboratory Research Center Support Grant, CA36727), and the American Cancer Society (Core Grant ACS SIG-16). EDITOR'S STATEMENT The paper by Rizzino et al. demonstrates that receptor number decreases as a function of cell density. This may represent a mechanism by which cell proliferation is reduced as cell density increases.  相似文献   
146.
147.
-Tocopherol, a superior chain-breaking, peroxyl radical-trapping antioxidant and the most active component of vitamin E, is elevated in liver tumor cells, contributing to their greater resistance towards lipid peroxidation compared to cells from normal tissues. Also, in regenerating rat liver the level of vitamin E has been found to fluctuate in phase with the rate of cell division. In order to study the biokinetcis and mechanisms of the distribution of vitamin E in organs and within tissues of animals, deuterated forms of -tocopherol have been synthesized and their uptake into blood and tissues has been measured by gas chromatography-mass spectrometry. Measurement of the competitive uptake from a mixture of the RRR-and SRR--tocopherol stereoisomers labelled with different amounts of deuterium shows that the liver exerts a strong preference for secretion of the natural (RRR) stereoisomer into the plasma. It is suggested that a tocopherol-binding protein plays a key role in this process.  相似文献   
148.
149.
Peeter Kangur 《Hydrobiologia》1996,338(1-3):173-177
The population of bream in L. Peipsi was studied with respect to age, growth rate, condition factor (according to Fulton) and length-weight relationship in 1994. That autumn the bream population in L. Peipsi consisted of fishes aged from 0+ to 15+. During the first year bream reached an average body length of 7.9 cm (the commercial legal size (30 cm) was usually attained by the end of the 5th–6th year. The condition of bream in this lake was above the average of Estonian lakes. The relatively good growth rate and condition of bream in the lake indicates that the waterbody is appropriate for this fish.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号