首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24982篇
  免费   2180篇
  国内免费   2204篇
  29366篇
  2024年   93篇
  2023年   506篇
  2022年   670篇
  2021年   974篇
  2020年   1034篇
  2019年   1191篇
  2018年   989篇
  2017年   948篇
  2016年   927篇
  2015年   1037篇
  2014年   1271篇
  2013年   1645篇
  2012年   990篇
  2011年   1118篇
  2010年   893篇
  2009年   1192篇
  2008年   1200篇
  2007年   1341篇
  2006年   1135篇
  2005年   1058篇
  2004年   914篇
  2003年   846篇
  2002年   796篇
  2001年   715篇
  2000年   600篇
  1999年   575篇
  1998年   528篇
  1997年   442篇
  1996年   431篇
  1995年   371篇
  1994年   339篇
  1993年   305篇
  1992年   299篇
  1991年   247篇
  1990年   212篇
  1989年   181篇
  1988年   165篇
  1987年   155篇
  1986年   140篇
  1985年   184篇
  1984年   139篇
  1983年   90篇
  1982年   117篇
  1981年   92篇
  1980年   61篇
  1979年   62篇
  1978年   42篇
  1977年   27篇
  1975年   21篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
腐殖酸对小麦抗旱性的生理效应   总被引:14,自引:2,他引:12  
在干旱气候条件下,喷施腐殖酸钠(HA)、黄腐酸钠(FA)可降低土壤水分损耗,提高小麦叶片持水能力,叶片细胞超氧物歧化酶(SOD)、过氧化氢酶(CAT)活性明显提高,丙二醛(MDA)含量和电解质渗出率明显降低,可减缓叶绿素降解,增强光合速率和光合产物积累,延缓植株衰老,小麦抗旱性增强,千粒重增加.  相似文献   
152.
Summary The glycosylation and subsequent processing of native and recombinant glycoproteins expressed in established insect cell lines and insect larvae were compared. TheSpodoptera frugiperda (Sf21) andTrichoplusia ni (TN-368 and BTI-Tn-5B1-4) cell lines possessed several intrinsic glycoproteins that are modified with both N- and O-linked oligosaccharides. The N-linked oligosaccharides were identified as both the simple (high mannose) and complex (containing sialic acid) types. Similarly, theT. ni larvae also possessed intrinsic glycoproteins that were modified with O-linked and simple and complex N-linked oligosaccharides. Additionally, human placental, secreted alkaline phosphatase (SEAP) produced during replication of a recombinant baculovirus inT. ni larvae was modified with complex oligosaccharide having sialic acid linked α(2–6) to galactose.  相似文献   
153.
In log-phase cells of staphylococci, cultivated under high, non-lytic concentrations of penicillin G, there occurred a novel killing process hitherto hidden behind seemingly bacteriostatic effects. Two events are essential for the apprearance of this hidden death: (i) the failure of the dividing cell to deposit enough fibrillar cross-wall material to be welded together, and (ii) a premature ripping up of incomplete cross walls along their splitting system. Hidden death started as early as 10–15 min after drug addition, already during the first division cycle. It was the consequence of a loss of cytoplasmic constituents which erupted through peripheral slit-like openings in the incomplete cross walls. The loss resulted either in more or less empty cells or in cell shrinkage. These destructions could be prevented by raising the external osmotic pressure. In contrast, the conventional non-hidden death occurred only much later and exclusively during the second division cycle and mainly in those dividing cells, whose nascent cross walls of the first division plane had been welded together. These welding processes at nascent cross walls, resulting in tough connecting bridges between presumptive individual cells, were considered as a morphogenetic tool which protects the cells, so that they can resist the otherwise fatal penicillin-induced damages for at least an additional generation time (morphogenetic resistance system). Such welded cells, in the virtual absence of underlying cross-wall material, lost cytoplasm and were killed via ejection through pore-like wall openings or via explosions in the second division plane and after liberation of their murosomes, as it was the case in the presence of low, lytic concentrations of penicillin. Bacteriolysis did not cause any of the hitherto known penicillin-induced killing processes.Dedicated to Prof. Dr. Georg Henneberg on the occasion of his 85th birthday  相似文献   
154.
A method is described for using young field slugs Deroceras reticulatum (Muller) in a bioassay study of biochemical resistance of potato (Solanum tuberosum L.) cultivars to slugs. Tuber parts or an artificial diet were provided as food sources. Comparisons were made of feeding, survival and weight gain between the susceptible cultivar Maris Piper and the resistant cultivar Pentland Dell. Biochemical analyses were made of these two cultivars and the resistant cultivars Stormont Enterprise and Majestic. Comparisons of tuber sections and peelings as food sources indicated factors affecting growth were located in the surface layers of the tubers. Phenolics and glycoalkaloids were concentrated in the surface layers but the amounts were similar in the susceptible and resistant cultivars and the bioassays indicated that neither acting alone could explain resistance. The amounts and distribution of free amino acids also did not correlate with resistance although when supplied in the artificial diet they partly inhibited feeding. Proteinaceous inhibitors of slug gut proteolytic enzymes were present throughout the tubers but were not concentrated in the surface layers and the amounts were similar in the different cultivars thus they too did not explain the difference in susceptibility between the cultivars. Bioassays using acetone extracts (low molecular weight substances) and acetone powders (high molecular weight substances) either alone or in combination indicated that the resistant cultivar Pentland Dell contained a high molecular weight substance which together with a low molecular weight substance from either the same cultivar or the susceptible Maris Piper could confer resistance. Bioassays using protein extracts supplied in the presence or absence of chlorogenic acid indicated that this mechanism could comprise enzymic oxidation of phenolics. Assays of phenolase confirmed this since activity was highest in the outer layers of the tubers and was highest in the three resistant cultivars. Thus the chief resistance factor identified was high phenolase activity acting rapidly on phenolics when the slug first bites the tuber surface. The quantity of phenolics per se did not control the resistance. Thus while phenolics must be available, resistance is compatible with low blackening on cutting the tuber.  相似文献   
155.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   
156.
The genetic basis of resistance in wild flax (Linum marginale) to its host-specific pathogen Melampsora lini was investigated in seven lines collected from a single population growing at Kiandra, New South Wales and in an additional ten lines collected more widely across southeastern Australia. All lines showed different phenotypic patterns of resistance and susceptibility. Genetic analyses indicated the presence of single dominant genes for race-specific resistance in all but one of these lines. That particular line appeared to carry two linked dominant genes for resistance. Intercrosses between lines in each of these groups of L. marginale detected substantially more linkage between the resistance genes in the Kiandra population sample than between those in the broader geographic collection. This result is interpreted to indicate a possible mechanism whereby resistance genes are generated in natural populations.  相似文献   
157.
P. R. Burbridge 《Hydrobiologia》1994,285(1-3):311-322
Freshwater habitats play a very important role in sustaining human activities. Natural functions of wetlands, and other freshwater habitats, generate a wide array of resources that directly or indirectly support the economic and social welfare of diverse groups of people. This role is being seriously weakened as a result of inappropriate planning and management approaches which fail to maintain the functional integrity of the freshwater ecosystems with the result that the flow and quality of resources is degraded. This paper illustrates some of the major functions of wetlands and presents a case for developing integrated planning and management practices that protect the health and productivity of freshwater wetlands and seek to optimise the sustainable use of the flows of resources they generate.  相似文献   
158.
159.
TwoApium graveolens var.rapaceum (L.) cultivars that differ in their suitability for the survival and growth ofSpodoptera exigua (Hübner) andTrichoplusia ni (Hübner) were used to examine the effect of genetic and seasonal environmental variation in host plant suitability on the efficacy ofBacillus thuringiensis subsp.kurstaki (Berliner). The effects of host plant genotype andB. thuringiensis were generally independent, so thatB. thuringiensis efficacy was greatest on the resistant host plant cultivar. Host plant suitability varied within growing season for both insect species but, while host plant suitability decreased with increasing plant age forT. ni, the response ofS. exigua to plant age was not as clear. Within season variation in host plant suitability affectedB. thuringiensis efficacy and the interaction betweenB. thuringiensis and host plant cultivar forS. exigua but not forT. ni. Soluble protein and Folin-Denis phenolic concentrations of host plant tissue were not correlated with changes in host plant suitability to either insect species.  相似文献   
160.
The effects of elevated atmospheric CO2 concentration on plant-fungi and plant-insect interactions were studied in an emergent marsh in the Chesapeake Bay. Stands of the C3 sedge Scirpus olneyi Grey, and the C4 grass Spartina patens (Ait.) Muhl. have been exposed to elevated atmospheric CO2 concentrations during each growing season since 1987. In August 1991 the severities of fungal infections and insect infestations were quantified. Shoot nitrogen concentration ([N]) and water content (WC) were determined. In elevated concentrations of atmospheric CO2, 32% fewer S. olneyi plants were infested by insects, and there was a 37% reduction in the severity of a pathogenic fungal infection, compared with plants grown in ambient CO2 concentrations. S. olneyi also had reduced [N], which correlated positively with the severities of fungal infections and insect infestations. Conversely, S. patens had increased WC but unchanged [N] in elevated concentrations of atmospheric CO2 and the severity of fungal infection increased. Elevated atmospheric CO2 concentration increased or decreased the severity of fungal infection depending on at least two interacting factors, [N] and WC; but it did not change the number of plants that were infected with fungi. In contrast, the major results for insects were that the number of plants infected with insects decreased, and that the amount of tissue that each insect ate also decreased.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号