首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1245篇
  免费   81篇
  国内免费   142篇
  2024年   7篇
  2023年   13篇
  2022年   14篇
  2021年   18篇
  2020年   34篇
  2019年   40篇
  2018年   45篇
  2017年   37篇
  2016年   44篇
  2015年   32篇
  2014年   44篇
  2013年   77篇
  2012年   36篇
  2011年   72篇
  2010年   40篇
  2009年   53篇
  2008年   46篇
  2007年   58篇
  2006年   43篇
  2005年   58篇
  2004年   45篇
  2003年   41篇
  2002年   47篇
  2001年   43篇
  2000年   18篇
  1999年   29篇
  1998年   44篇
  1997年   32篇
  1996年   21篇
  1995年   29篇
  1994年   29篇
  1993年   28篇
  1992年   23篇
  1991年   7篇
  1990年   24篇
  1989年   21篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   17篇
  1984年   22篇
  1983年   17篇
  1982年   18篇
  1981年   13篇
  1980年   5篇
  1979年   8篇
  1978年   13篇
  1977年   9篇
  1974年   3篇
  1973年   3篇
排序方式: 共有1468条查询结果,搜索用时 15 毫秒
941.
The terrestrial overwintering larvae of the cranefly Tipula trivittata were freeze tolerant (able to survive the freezing of their extracellular body fluids) throughout the winter and spring of 1982–1983 until they pupated in mid-May. The larvae were most cold tolerant (24 h lower lethal temperatures of ?25 to ?30°C) in late January and early February. Sorbitol, at a maximal concentration of ~0.4 M, was the only polyol determined to be present at high levels and sorbitol accounted for most of the seasonal fluctuation in osmotic concentration. Haemolymph inorganic ion (Na+, K+, Ca2+, Mg2+, Cl?) concentrations did not vary seasonally.The supercooling points of the larvae remained constant at ?6 to ?7°C over the study period because of the presence of haemolymph ice nucleating factors. These ice nucleating factors consist not only of haemolymph proteins, as had been demonstrated previously in other insect species, but also lipoproteins.  相似文献   
942.
We investigated the seasonal and geographical variation in the stable carbon isotope ratios of total dissolved inorganic carbon (13CPOC) and suspended matter (13CPOC) in the freshwater part of the River Scheldt. Two major sources of particulate organic matter (POM) occur in this riverine system: riverine phytoplankton and terrestrial detritus. In winter the lowest 13CDIC values are observed due to enhanced input of CO2 from decomposition of 13C-depleted terrestrial plant detritus (average 13CDIC = –/14.3). During summer, when litter input from terrestrial flora is the lowest, water column respiration on POM of terrestrial origin is also the lowest as evidenced by less negative 13CDIC values (average 13CDIC = –9.9). In winter the phytoplankton biomass is low, as indicated by low chlorophyll a concentrations (Chl a < 4.5 gl–1), compared to summer when chlorophyll a concentrations can rise to a maximum of 54 gl–1. Furthermore, in winter the very narrow range of 13CPOC (from –26.5 to –27.6) is associated with relatively high C/N ratios (C/N > 9) suggesting that in winter a major fraction of POC is derived from allochthonous matter. In summer 13CPOC exhibits a very wide range of values, with the most negative values coinciding with high Chl a concentrations and low C/N ratios (C/N < 8). This suggests predominance of phytoplankton carbon in the total particulate carbon pool, utilising a dissolved inorganic carbon reservoir, which is already significantly depleted in 13C. Using a simple two source mixing approach a reconstruction of the relative importance of phytoplankton to the total POC pool and of 13C/12C fractionation by phytoplankton is attempted.  相似文献   
943.
Efficient design of fluidized-bed biomolecule adsorption from crude feed stock requires particles with elevated density, large adsorption capacity and broad chemical stability. Moreover, combinations of small particle diameters with high densities allow for high fluidization velocities while preserving a rapid mass transfer.This approach has been implemented by combining stable porous mineral oxide of high density (2.2, 4.7, 5.7, 9.4 g/ml) with functionalized hydrogels. The cross-linked hydrogel derivative fills the internal porosity of the beads and provides a high equilibrium binding capacity.Various porous mineral oxides (silica, titania, zirconia and hafnia) have been characterized in term of fluidization behavior, surface reactivity and chemical resistance to harsh CIP procedures. Porous zirconia particles were also modified into ion-exchangers by suitable surface modification and intraparticle polymerization of functionalized stable derivatives of acrylic monomers. Back-mixings in fluidized bed columns were analyzed by residence time distribution analysis of inert tracers. 328 and 218 mixing plates per meter were found for respectively, bed expansions of 1.7 and 2.9. The dynamic protein adsorption behaviors of zirconia-based polymeric anion-exchange sorbents were obtained in fluidized-bed, using BSA as model protein. A dynamic binding capacity of 62 mg/ml was observed at a fluidizing velocity of 320 cm/h. These investigations substantiate the favorable physical and chemical characteristics anticipated for dense composite beads for use as fluidized bed adsorbents.  相似文献   
944.
Escherichia coli K1 secretes a homopolymer capsular polysaccharide (CPS) consisting of alpha 2,8 linked N-acetylneuraminic acid (poly 2,8NeuNAc). Typically poly 2,8NeuNAc is arranged in low and high order alpha helices with carboxyl and hydroxyl groups extending from the helices. Several properties of CPS such as antigenicity and metal binding can be influenced by its structural conformation. We examined the influences of metal ions and temperature on the secondary structure of polya2,8NeuNAc. Conformation alteration was detected by ultraviolet (UV) spectroscopy and circular dichroism (CD). The majority of metal ions tested had no detectable influence on poly a2,8NeuNAc structure. In contrast, Yb3+., Hg2+, and Cu2+ ions greatly altered the UV and CD spectra, which suggests that these ions had disrupted the alpha helical structure of poly 2,8NeuNAc. These changes were influenced by the metal ion concentration. When poly 2,8NeuNAc was incubated at temperatures ranging from 20 - 60°C, alterations in its UV absorption spectra were also seen. The most significant change occurred between 35 and 40°C. In summary, this study suggests that the higher order structure and function of bacterial CPS may be influenced by environmental factors  相似文献   
945.
The mechanism of inorganic carbon (Ci) acquisition by the economic brown macroalga, Hizikia fusiforme (Harv.) Okamura (Sargassaceae), was investigated to characterize its photosynthetic physiology. Both intracellular and extracellular carbonic anhydrase (CA) were detected, with the external CA activity accounting for about 5% of the total. Hizikia fusiforme showed higher rates of photosynthetic oxygen evolution at alkaline pH than those theoretically derived from the rates of uncatalyzed CO2 production from bicarbonate and exhibited a high pH compensation point (pH 9.66). The external CA inhibitor, acetazolamide, significantly depressed the photosynthetic oxygen evolution, whereas the anion‐exchanger inhibitor 4,4′‐diisothiocyano‐stilbene‐2,2′‐disulfonate had no inhibitory effect on it, implying the alga was capable of using HCO3? as a source of Ci for its photosynthesis via the mediation of the external CA. CO2 concentrations in the culture media affected its photosynthetic properties. A high level of CO2 (10,000 ppmv) resulted in a decrease in the external CA activity; however, a low CO2 level (20 ppmv) led to no changes in the external CA activity but raised the intracellular CA activity. Parallel to the reduction in the external CA activity at the high CO2 was a reduction in the photosynthetic CO2 affinity. Decreased activity of the external CA in the high CO2 grown samples led to reduced sensitiveness of photosynthesis to the addition of acetazolamide at alkaline pH. It was clearly indicated that H. fusiforme, which showed CO2‐limited photosynthesis with the half‐saturating concentration of Ci exceeding that of seawater, did not operate active HCO3? uptake but used it via the extracellular CA for its photosynthetic carbon fixation.  相似文献   
946.
Relationships between surface sediment diatom assemblages and measured environmental variables from 77 lakes in the central Canadian arctic treeline region were examined using multivariate statistical methods. Lakes were distributed across the arctic treeline from boreal forest to arctic tundra ecozones, along steep climatic and environmental gradients. Forward selection in canonical correspondence analysis determined that dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), total nitrogen (TN), lake surface area, silica, lake‐water depth, and iron explained significant portions of diatom species variation. Weighted‐averaging (WA) regression and calibration techniques were used to develop inference models for DIC, DOC, and TN from the estimated optima of the diatom taxa to these environmental variables. Simple WA models with classical deshrinking produced models with the strongest predictive abilities for all three variables based on the bootstrapped root mean squared errors of prediction (RMSEP). WA partial least squares showed little improvement over the simpler WA models as judged by the jackknifed RMSEP. These models suggest that it is possible to infer trends in DIC, DOC, and TN from fossil diatom assemblages from suitably chosen lakes in the central Canadian arctic treeline region.  相似文献   
947.
Microcystis aeruginosa Kütz. 7820 was cultured at 350 and 700 μL·L ? 1 CO2 to assess the impacts of doubled atmospheric CO2 concentration on this bloom‐forming cyanobacterium. Doubling of CO2 concentration in the airflow enhanced its growth by 52%–77%, with pH values decreased and dissolved inorganic carbon (DIC) increased in the medium. Photosynthetic efficiencies and dark respiratory rates expressed per unit chl a tended to increase with the doubling of CO2. However, saturating irradiances for photosynthesis and light‐saturated photosynthetic rates normalized to cell number tended to decrease with the increase of DIC in the medium. Doubling of CO2 concentration in the airflow had less effect on DIC‐saturated photosynthetic rates and apparent photosynthetic affinities for DIC. In the exponential phase, CO2 and HCO3 ? levels in the medium were higher than those required to saturate photosynthesis. Cultures with surface aeration were DIC limited in the stationary phase. The rate of CO2 dissolution into the liquid increased proportionally when CO2 in air was raised from 350 to 700 μL·L ? 1, thus increasing the availability of DIC in the medium and enhancing the rate of photosynthesis. Doubled CO2 could enhance CO2 dissolution, lower pH values, and influence the ionization fractions of various DIC species even when the photosynthesis was not DIC limited. Consequently, HCO3 ? concentrations in cultures were significantly higher than in controls, and the photosynthetic energy cost for the operation of CO2 concentrating mechanism might decrease.  相似文献   
948.
Organometal trihalide perovskites have recently emerged as promising materials for low‐cost, high‐efficiency solar cells. In less than five years, the efficiency of perovskite solar cells (PSC) has been updated rapidly as a result of new strategies adopted in their fabrication process, including device structure, interfacial engineering, chemical compositional tuning, and crystallization kinetics control. To date, the best PSC efficiency has reached 20.1%, which is close to that of single crystal silicon solar cells. However, the stability of PSC devices is still unsatisfactory and is the main bottleneck impeding their commercialization. Here, we summarize recent studies on the degradation mechanisms of organometal trihalide perovskites in PSC devices, and the strategies for stability improvement.  相似文献   
949.
汞对玉米幼苗膜脂过氧化及体内保护系统的影响   总被引:10,自引:0,他引:10  
随着处理HgCl2浓度的升高,细胞膜脂质过氧化水平升高,细胞膜透性增大,CAT活性降低,SOD、POD活性升高,组织可溶性蛋白质含量升高。  相似文献   
950.
Effects of Pb2+, Ni2+, Hg2+ and Se4+ on cultured human glioma U-343MG cells were investigated considering uptake, toxicity and, in combination with radiation, clonogenic cell survival. The cells were exposed to 0-100 m of the metals for a week before the evaluation. The tests showed a tendency to toxicity with 10 m nickel although not significant (P > 0.05). Selenium, lead and mercury exerted a significant toxicity (P < 0.05) at 2.5 m, 10 m and 1 m, respectively. To challenge the clonogenic cell survival capacity, the cells were irradiated with60Co photons after being exposed to the highest nontoxic concentration of the different metals. The clonogenic cell survival tests, after irradiation, showed no significant change if the cells were exposed to 5 m nickel, 0.5 m selenium or 5 m lead compared with those not exposed. Mercury, 0.1 m, gave a relative reduction in survival compared with only irradiated cells of 58 ± 17%. Thus, only mercury affected the radiation-induced damage and/or repair. When exposed to the highest nontoxic concentrations of the different metals, the cultures did not display a significant uptake ratio (metal concentration ratio of exposed cells to control cells) of nickel (3.1 ± 3.3), only a small uptake ratio of selenium (4.0 ± 0.4), while there was a large uptake ratio of both lead (2.6 ± 1.7) x 102 and mercury (1.5 ± 0.2) x 101. The results indicated that nickel was neither especially toxic nor influenced the clonogenic cell survival after irradiation. Mercury was more toxic and also influenced the radiation sensitivity. Lead was taken up strongly but did not influence the radiation sensitivity. Selenium accumulated but gave no detectable effect on the radiation sensitivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号