全文获取类型
收费全文 | 182篇 |
免费 | 48篇 |
国内免费 | 3篇 |
专业分类
233篇 |
出版年
2024年 | 1篇 |
2023年 | 4篇 |
2022年 | 14篇 |
2021年 | 12篇 |
2020年 | 21篇 |
2019年 | 23篇 |
2018年 | 19篇 |
2017年 | 21篇 |
2016年 | 9篇 |
2015年 | 12篇 |
2014年 | 12篇 |
2013年 | 13篇 |
2012年 | 10篇 |
2011年 | 5篇 |
2010年 | 1篇 |
2009年 | 7篇 |
2008年 | 5篇 |
2007年 | 5篇 |
2006年 | 2篇 |
2005年 | 6篇 |
2004年 | 2篇 |
2003年 | 10篇 |
2002年 | 1篇 |
2001年 | 2篇 |
2000年 | 3篇 |
1999年 | 1篇 |
1998年 | 1篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1995年 | 3篇 |
1994年 | 1篇 |
1992年 | 1篇 |
1991年 | 1篇 |
1990年 | 1篇 |
排序方式: 共有233条查询结果,搜索用时 15 毫秒
41.
Multifunctional smart windows are successfully fabricated by assembling inkjet printed CeO2/TiO2 and WO3/poly(3,4‐ethylenedioxythiophene)‐poly(styrene sulfonate) films as the anode and cathode, respectively. Large optical modulation (more than 70% at 633 nm), fast switching (12.7/15.8 s), high coloration efficiency (108.9 cm2 C?1), and excellent bistability are achieved by the assembled smart windows. The multifunctional smart window not only can be used as typical electrochromic window, which can change its color to dynamically control the solar radiation transmittance through windows or protect privacy during the day, but also can be used as energy‐storage device simultaneously. The designed smart window releases the stored energy to light the bulbs and power other electronic devices at night while its color gradually reverts to transparent state. Moreover, the level of stored energy can be monitored via the visually detectable reversible color variation of the window. The fascinating multifunctional smart windows exhibit promising features for a wide range of applications in buildings, airplanes, automobiles, etc. 相似文献
42.
Minhaz Uddin Ahmed Mohammad Mosharraf Hossain Mohammadali Safavieh Yen Lu Wong Ibrahim Abd Rahman Mohammed Zourob 《Critical reviews in biotechnology》2016,36(3):495-505
Screen printing technology provides a cheap and easy means to fabricate disposable electrochemical devices in bulk quantities which are used for rapid, low-cost, on-site, real-time and recurrent industrial, pharmaceutical or environmental analyses. Recent developments in micro-fabrication and nano-characterization made it possible to screen print reproducible feature on materials including plastics, ceramics and metals. The processed features forms screen-printed disposable biochip (SPDB) upon the application of suitable bio-chemical recognition receptors following appropriate methods. Adequacy of biological and non-biological materials is the key to successful biochip development. We can further improve recognition ability of SPDBs by adopting new screen printed electrode (SPE) configurations. This review covers screen-printing theory with special emphasis on the technical impacts of SPE architectures, surface treatments, operational stability and signal sensitivity. The application of SPE in different areas has also been summarized. The article aims to highlight the state-of-the-art of SPDB at the laboratory scale to enable us in envisaging the deployment of emerging SPDB technology on the commercial scale. 相似文献
43.
44.
Christopher Heuer JohnAlexander Preuß Taieb Habib Anton Enders Janina Bahnemann 《Engineering in Life Science》2022,22(12):744
Since its invention in the 1980s, 3D printing has evolved into a versatile technique for the additive manufacturing of diverse objects and tools, using various materials. The relative flexibility, straightforwardness, and ability to enable rapid prototyping are tremendous advantages offered by this technique compared to conventional methods for miniaturized and microfluidic systems fabrication (such as soft lithography). The development of 3D printers exhibiting high printer resolution has enabled the fabrication of accurate miniaturized and microfluidic systems—which have, in turn, substantially reduced both device sizes and required sample volumes. Moreover, the continuing development of translucent, heat resistant, and biocompatible materials will make 3D printing more and more useful for applications in biotechnology in the coming years. Today, a wide variety of 3D‐printed objects in biotechnology—ranging from miniaturized cultivation chambers to microfluidic lab‐on‐a‐chip devices for diagnostics—are already being deployed in labs across the world. This review explains the 3D printing technologies that are currently used to fabricate such miniaturized microfluidic devices, and also seeks to offer some insight into recent developments demonstrating the use of these tools for biotechnological applications such as cell culture, separation techniques, and biosensors. 相似文献
45.
《Saudi Journal of Biological Sciences》2022,29(3):1487-1500
In the present study, 30 potential germplasm of oat (Avena sativa L.) were subjected to proximate, elemental, and HPLC analysis to provide a scientific basis to genetic diversity present among them. The extracts of the selected germplasms were also evaluated for their antioxidant potentials through DPPH and ABTS assays. Proximate analysis showed protein contents to be in the range 8.35–17.72% with the highest protein contents in the accession line 22,365 (17.72 ± 0.38%). The genotype-725 showed the highest carbohydrate, and dry matter (53.35 ± 0.01 and 93.50 ± 0.07% respectively) contents whereas, the germplasm-830 contained the highest fat (7.88 ± 0.12%) contents while the highest moisture contents were there in germplasm-22348 (11.95 ± 0.06%). The crude fiber contents (19.67 ± 0.19%) were found high in germplasm-832. The mentioned contents were also correlated to each other where a negative (?0.431*) correlation was noted for crude protein and carbohydrate while ash content to crude protein has a positive (0.38*) correlation. A positive and a negative correlation were there in Crude fats/crude protein (0.30*) and crude fats/moisture contents (?0.39*) respectively. Principal component analysis showed an Eigenvalue of 0.76 with a total variation of 85.01% when applied to proximate components. Based on cluster analysis to proximate composition all the oat germplasms were divided into 5 sub-clusters, where accession numbers 769 and 817 were found to be the most diverse genotypes. The elemental analysis confirmed the presence of magnesium (2.89–7.62 mg/L), sodium (3.71–8.03 mg/L), manganese (0.93–3.71 mg/L), copper (0.35–3.36 mg/L), iron (2.15–6.82 mg/L), zinc (1.30–3.37 mg/L), chromium (0.37–3.34 mg/L), and potassium (50.70–59.60 mg/L) in the selected germplasms. Principal component analysis for elemental composition showed the total variation of 73.75% with the Eigenvalue of 0.97. Cluster analysis on an elemental basis divided all the oat germplasms into 7 sub-clusters where accession numbers 769 and 22,350 were found to be the most diverse germplasm. Phytochemical analysis performed through HPLC resulted in the identification of nine possible compounds (malic acid, epigallocatechin gallate, quercetin, morin, ellagic acid, catechin hydrate, rutin, pyrogallol, and mandelic acid) in various germplasm of oat. A concentration-dependent antioxidant response was recorded when extracts were tested as an inhibitor of DPPH and ABTS free radicals. The results revealed that oat grains are a good source of nutrients, minerals, and phytochemicals that can be used as nutraceuticals and as food. The genetic differences revealed that this plant can be grown under varied environmental conditions. 相似文献
46.
47.
Thomas N. Stewart Bonnie E. Pierson Ravi Aggarwal Roger J. Narayan Dr. 《Biotechnology journal》2009,4(2):206-209
The development of a cost-effective method for manufacturing immunoassays is a key step towards their commercial use. In this study, a piezoelectric inkjet printer and a nylon membrane were used to fabricate a disposable immunoassay. Using a piezoelectric inkjet printer, a cross-hatch pattern of goat anti-mouse antibody (GαM) and rabbit anti-horseradish peroxidase (RαHRP) antibody were deposited on the nylon membrane. These patterns were subsequently treated with a solution containing rabbit anti-goat antibody labeled with horseradish peroxidase (RαG-HRP). The effectiveness of the immobilization process was examined using tetramethylbenzidine (TMB), which oxidizes in the presence of HRP to form a visible precipitate. Optical evaluation of the TMB precipitate was used to assess the precision of the features in the inkjet-printed pattern as well as antibody functionality following inkjet printing. Uniform patterns that contained functional antibodies were fabricated using the piezoelectric inkjet printer. These results suggest that piezoelectric inkjet printing may be used to fabricate low-cost disposable immunoassays for biotechnology and healthcare applications. 相似文献
48.
Afrah M. Aldawsari Nada D. Alkhathami Ameena M. Al-bonayan Hussain Alessa Kholood M. Alkhamis Hana M. Abumelha Nashwa M. El-Metwaly 《Luminescence》2023,38(5):613-624
Novel thermochromic and vapochromic paper substrates were prepared via screen printing with anthocyanin extract in the presence of ferrous sulfate mordant, resulting in multi-stimuli responsive colorimetric paper sheets. Environmentally friendly anthocyanin extract was obtained from red-cabbage (Brassica oleracea var. capitata L.) to function as spectroscopic probe in coordination with ferrous sulfate mordant. Pink anthocyanin/resin nanocomposite films immobilized onto paper surface were developed by well-dispersion of anthocyanin extract as a colorimetric probe in a binding agent without agglomeration. As demonstrated by CIE colorimetric studies, the pink (λmax = 418 nm) film deposited onto paper surface turns greenish-yellow (λmax = 552 nm) upon heating from 25 to 75°C, demonstrating new thermochromic film for anti-counterfeiting applications. The thermochromic effects were investigated at different concentrations of the anthocyanin extract. Upon exposure to ammonia gas, the color of the anthocyanin-printed sheets changes rapidly from pink to greenish-yellow, and then immediately returns to pink after taking the gaseous ammonia stimulus away, demonstrating vapochromic effect. The current sensor strip showed a detection limit for ammonia gas in the range 50–300 ppm. Both thermochromism and vapochromism showed high reversibility without fatigue. In addition to studying the rheological properties of the prepared composites, the morphological and mechanical properties of the printed cellulose substrates were also studied. 相似文献
49.
Luke L. Powell Adam Metallo Crinan Jarrett Nathan W. Cooper Peter P. Marra Scott R. McWilliams Ulf Bauchinger Bryant C. Dossman 《Journal of Field Ornithology》2021,92(1):67-76
The size of the pectoral muscle is an important component of body condition in birds and has been linked to indices of fitness and migratory performance. Bauchinger et al. (2011. Journal of Ornithology 152: 507–514) developed, calibrated, and validated an aluminum “muscle meter” device that estimates the size of pectoral muscles noninvasively. To make this tool more widely available, we created a CAD model from 3D‐scan data of the aluminum muscle meter that can be 3D‐printed in durable plastic for ~ $30 USD. We tested this device on seven species of songbirds in Jamaica, The Bahamas, Cameroon, Equatorial Guinea, and Michigan. We demonstrate that the breast muscle meter measurements are (1) repeatable among users, (2) correlated with a four‐category visual breast muscle scoring system, and (3) correlated with scaled mass index (an index of body condition). Muscle scores from our device outperformed the traditional four‐category muscle scoring system in predicting scaled mass index. Finally, with our device, we quantified the increasing breast muscle size of American Redstarts (Setophaga ruticilla) from March through May as they prepared for spring migration. Given the precision of the 3D‐scanning hardware used to generate our 3D image for printing, we produced a plastic muscle meter that is as precise and useful as the aluminum original, but more cost‐effective and widely available. 相似文献
50.
《Cryobiology》2020
Cell cryopreservation stops the biological activity of cells by placing them in the frozen state, and can be used to preserve cells without subculturing, which can cause contamination and genetic drift. However, the freezing process used in cryopreservation can injure or damage the cells due to the cytotoxicity of cryoprotecting agents (CPAs). We have previously reported a CPA-free cryopreservation method based on inkjet technology. In this method, the vitrified cells were exposed to the room temperature atmosphere during the transport of the cells using tweezers, which caused devitrification due to the increased temperature and often lowered the cell viability. In the present study, we developed an automatic thawing apparatus that transports the vitrified cells rapidly into a prewarmed medium using a spring hinge. Observations with a high-speed camera revealed that the spring hinge drops the cells into the prewarmed medium within 20 ms. All heat-transfer simulations for the apparatuses with different designs and rotation speeds showed that the cells remained below the glass-transition temperature during the transport. Finally, the apparatus was evaluated using mouse fibroblast 3T3 cells. The cell viability was improved and its reproducibility was enhanced using this apparatus. The results indicate that the combination of superflash freezing with the rapid thawing process represents a promising approach to circumvent the problems typically associated with the addition of CPAs. 相似文献