首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3179篇
  免费   295篇
  国内免费   95篇
  2024年   10篇
  2023年   140篇
  2022年   137篇
  2021年   259篇
  2020年   242篇
  2019年   347篇
  2018年   230篇
  2017年   148篇
  2016年   143篇
  2015年   198篇
  2014年   187篇
  2013年   302篇
  2012年   162篇
  2011年   133篇
  2010年   103篇
  2009年   96篇
  2008年   96篇
  2007年   103篇
  2006年   81篇
  2005年   96篇
  2004年   56篇
  2003年   50篇
  2002年   64篇
  2001年   30篇
  2000年   16篇
  1999年   19篇
  1998年   16篇
  1997年   17篇
  1996年   5篇
  1995年   13篇
  1994年   11篇
  1993年   11篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1982年   1篇
  1979年   4篇
  1978年   1篇
排序方式: 共有3569条查询结果,搜索用时 15 毫秒
991.
Here I comment on the recent contribution by Barrientos et al. J. Neurosci. 32, 14641–14648 (2012) addressing treatment possibilities for surgery‐induced cognitive dysfunction. It has been over 15 years since the publication of a landmark study that indicated age as a major risk factor for postoperative cognitive dysfunction (POCD) (Moller et al., Lancet 351 , 857–861 1998). With increasing life expectancy, surgical procedures conducted in elderly persons are becoming more common. The prevalence of POCD may mean that some patients will exchange the incapacitating condition that led them to surgery in the first instance for another such condition, which has been created by the surgical procedure itself. The report by Barrientos and collaborators (2012) is a timely and welcome study that further examines treatment possibilities for surgery‐induced cognitive dysfunction. Future studies should address issues such as intensity and onset of inflammation within the brain and additional treatments possibilities beyond IL‐1‐ra.  相似文献   
992.
993.
994.
In mice, monocytes that exhibit a pro‐inflammatory profile enter muscle tissue after muscle injury and are crucial for clearance of necrotic tissue and stimulation of muscle progenitor cell proliferation and differentiation. The aim of this study was to test if pro‐inflammatory capacity of classically activated (M1) monocytes relates to muscle mass and strength in humans. This study included 191 male and 195 female subjects (mean age 64.2 years (SD 6.4) and 61.9 ± 6.4, respectively) of the Leiden Longevity Study. Pro‐inflammatory capacity of M1 monocytes was assessed by ex vivo stimulation of whole blood with Toll‐like receptor (TLR) 4 agonist lipopolysaccharide (LPS) and TLR‐2/1 agonist tripalmitoyl‐S‐glycerylcysteine (Pam3Cys‐SK4), both M1 phenotype activators. Cytokines that stimulate M1 monocyte response (IFN‐γ and GM‐CSF) as well as cytokines that are secreted by M1 monocytes (IL‐6, TNF‐α, IL‐12, and IL‐1β) were measured. Analyses were adjusted for age, height, and body fat mass. Upon stimulation with LPS, the cytokine production capacity of INF‐γ, GM‐CSF, and TNF‐α was significantly positively associated with lean body mass, appendicular lean mass and handgrip strength in men, but not in women. Upon stimulation with Pam3Cys‐SK4, IL‐6; TNF‐α; and Il‐1β were significantly positively associated with lean body mass and appendicular lean in women, but not in men. Taken together, this study shows that higher pro‐inflammatory capacity of M1 monocytes upon stimulation is associated with muscle characteristics and sex dependent.  相似文献   
995.
Background: The liver and kidney inflammation due to bacterial infection is one of the most common pathological problems leading to tissue damage or disease. In many liver and kidney disorders, which represent serious global health burden with a high economic cost, oxidative stress-related inflammation and apoptosis are important pathogenic components, finally resulting in acute liver and/or kidney failure. Erythropoietin and its analogues are well known to influence the interaction between apoptosis and inflammation in liver and kidney. Objective: The aim of the present study is to investigate and clarify the effect of Galaxaura oblongata (G. oblongata) red algae on lipopolysaccharides (LPS)-induced acute liver and kidney injury of mice with endotoxemia and associated molecular mechanism from inflammation, apoptosis and oxidative stress levels. Results: The current study cleared out that treatment of rats with the G. oblongata extract prior to LPS injection significantly lowered serum cytokines, including NF-κB, MPO and LPO, and improved liver apoptosis through suppressing protein tyrosine kinase signaling pathway, and that may be due to antibacterial activity as well antioxidant capacity of G. oblongata extract. Conclusion: The present study was cleared out the possibility of administration of G. oblongata red algae as a multi products source for biotechnological, medical, nutraceutical and pharmaceutical applications due to highly antioxidant and anti-inflammatory capacities even although more investigations are required for separating, purifying and characterizing these bioactive compounds.  相似文献   
996.
SARS‐CoV‐2 is the coronavirus responsible for the COVID‐19 pandemic. Proteases are central to the infection process of SARS‐CoV‐2. Cleavage of the spike protein on the virus''s capsid causes the conformational change that leads to membrane fusion and viral entry into the target cell. Since inhibition of one protease, even the dominant protease like TMPRSS2, may not be sufficient to block SARS‐CoV‐2 entry into cells, other proteases that may play an activating role and hydrolyze the spike protein must be identified. We identified amino acid sequences in all regions of spike protein, including the S1/S2 region critical for activation and viral entry, that are susceptible to cleavage by furin and cathepsins B, K, L, S, and V using PACMANS, a computational platform that identifies and ranks preferred sites of proteolytic cleavage on substrates, and verified with molecular docking analysis and immunoblotting to determine if binding of these proteases can occur on the spike protein that were identified as possible cleavage sites. Together, this study highlights cathepsins B, K, L, S, and V for consideration in SARS‐CoV‐2 infection and presents methodologies by which other proteases can be screened to determine a role in viral entry. This highlights additional proteases to be considered in COVID‐19 studies, particularly regarding exacerbated damage in inflammatory preconditions where these proteases are generally upregulated.  相似文献   
997.
998.
Endometritis is a reproductive disorder characterized by an inflammatory response in the endometrium, which causes significant economic losses to the dairy farming industry. MicroRNAs (miRNAs) are implicated in the inflammatory response and immune regulation following infection by pathogenic bacteria. Recent miRNA microarray analysis showed an altered expression of miR-92b in cows with endometritis. In the present study, we set out to investigate the regulatory mechanism of miR-92b in endometritis. Here, qPCR results first validated that miR-92b was down-regulated during endometritis. And then, bovine endometrial epithelial cells (BEND cells) stimulated by high concentration of lipopolysaccharide (LPS) were employed as an in vitro inflammatory injury model. Our data showed that overexpression of miR-92b significantly suppressed the activation of Toll-like receptor 4 (TLR4) and nuclear factor-κB (NF‐κB) in LPS-stimulated BEND cells, thereby reducing pro-inflammatory cytokines release and inhibiting cell apoptosis. Looking into the molecular mechanisms of regulation of inflammatory injury by miR-92b, we observed that overexpression of miR-92b restrained TLR4/NF‐κB by activating the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/β-catenin pathway. Furthermore, the luciferase reporter assay suggested that miR-92b targeted inhibition of phosphatase and tensin homolog (PTEN), an inhibitor of the PI3K/AKT/β-catenin pathway. Importantly, in vivo experiments confirmed that up-regulation of miR-92b attenuated the pathological injury in an experimental murine model of LPS-induced endometritis. Collectively, these findings show that enforced expression of miR-92b alleviates LPS-induced inflammatory injury by activating the PI3K/AKT/β-catenin pathway via targeting PTEN, suggesting a potential application for miR-92b-based therapy to treat endometritis or other inflammatory diseases.  相似文献   
999.
Rationale: Corticosteroid resistance (CR) seriously affects the therapeutic effects of steroids on many chronic inflammatory disorders, including airway allergy. The mechanism of CR development is unclear. Recent research indicates that livin, an apoptosis inhibitor, is associated with the regulation in cell activities. This study investigates the role of livin in the inducing and sustaining CR in the airway mucosa.Methods: Nasal epithelial cells (NECs) were isolated from surgically removed nasal mucosal tissues of patients with allergic rhinitis (AR) and nasal polyps with or without CR. Differentially expressed genes in NECs were analyzed by the RNA sequencing. A CR mouse model was developed to test the role of livin in CR development.Results: The results showed that NECs of AR patients with CR expressed high levels of livin, that was positively correlated with the thymic stromal lymphopoietin (TSLP) expression and the high Ras activation status in NECs. Livin and Ras activation mutually potentiating each other in the inducing and sustaining the TSLP expression in NECs. TSLP induced eosinophils and neutrophils to express glucocorticoid receptor-β (GRβ). Eosinophils and neutrophils with high CRβ expression were resistant to corticosteroids. Depletion of livin or inhibition of TSLP markedly attenuated CR and airway allergy.Conclusions: Livin facilitates CR development in the airways by promoting TSLP expression in epithelial cells and the GRβ expression in eosinophils and neutrophils. Depletion of livin or inhibiting TSLP attenuates CR development and inhibits airway allergy, this has the translational potential to be used in the treatment of airway allergy.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号