首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3197篇
  免费   295篇
  国内免费   95篇
  2024年   10篇
  2023年   140篇
  2022年   155篇
  2021年   259篇
  2020年   242篇
  2019年   347篇
  2018年   230篇
  2017年   148篇
  2016年   143篇
  2015年   198篇
  2014年   187篇
  2013年   302篇
  2012年   162篇
  2011年   133篇
  2010年   103篇
  2009年   96篇
  2008年   96篇
  2007年   103篇
  2006年   81篇
  2005年   96篇
  2004年   56篇
  2003年   50篇
  2002年   64篇
  2001年   30篇
  2000年   16篇
  1999年   19篇
  1998年   16篇
  1997年   17篇
  1996年   5篇
  1995年   13篇
  1994年   11篇
  1993年   11篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1982年   1篇
  1979年   4篇
  1978年   1篇
排序方式: 共有3587条查询结果,搜索用时 15 毫秒
91.
Unlike mammals, regenerative model organisms such as amphibians and fish are capable of spinal cord regeneration after injury. Certain key differences between regenerative and nonregenerative organisms have been suggested as involved in promoting this process, such as the capacity for neurogenesis and axonal regeneration, which appear to be facilitated by favorable astroglial, inflammatory and immune responses. These traits provide a regenerative‐permissive environment that the mammalian spinal cord appears to be lacking. Evidence for the regenerative nonpermissive environment in mammals is given by the fact that they possess neural stem/progenitor cells, which transplanted into permissive environments are able to give rise to new neurons, whereas in the nonpermissive spinal cord they are unable to do so. We discuss the traits that are favorable for regeneration, comparing what happens in mammals with each regenerative organism, aiming to describe and identify the key differences that allow regeneration. This comparison should lead us toward finding how to promote regeneration in organisms that are unable to do so. genesis 51:529–544. © 2013 Wiley Periodicals, Inc.  相似文献   
92.
Rats with collagen-induced arthritis (CIA) were necropsied on 14 occasions from 4 days after induction to 27 days after disease onset to evaluate the kinetics of local (joint protein extracts) and systemic (serum) levels of inflammatory and pro-erosive factors. Systemic increases in α1 acid glycoprotein and KC/GRO together with systemic and local enrichment of interleukin (IL)-1β, IL-6, CCL2, transforming growth factor (TGF)-β and elevated IL-1α and IL-18 in joint extracts preceded the onset of clinical disease. Systemic upregulation of IL-1β, IL-6, TGF-β CCL2, RANKL and prostaglandin E2 (PGE2) during acute and/or chronic CIA coincided with systemic leukocytosis and a CD4+ T-cell increase in blood and spleen. In contrast, progression of joint erosions during clinical CIA was associated with intra-articular increases in IL-1α/β, IL-6, IL-18, CCL2, KC/GRO and RANKL, and a dramatic decline in osteoprotegerin (OPG). These data indicate that systemic and local events in inflammatory arthritis can be discrete processes, driven by multiple cellular and humoral mediators with distinct temporospatial profiles.  相似文献   
93.
《Biomarkers》2013,18(7):600-604
Context: Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) participates in the inflammatory process.

Purpose: To describe changes of sTREM-1 in the serum after hemiarthroplasty (HA) and total hip arthroplasty (THA).

Methods: Serial blood samples were drawn from 122 patients with hip fracture. Interleukin-6 (IL-6), sTREM-1, and C-reactive protein (CRP) were measured.

Results: IL-6 and CRP were similarly increased after both HA and THA. sTREM-1 was increased early in HA and late after THA. The only parameter that was higher among patients who developed systemic inflammatory response syndrome was IL-6.

Conclusions: Kinetics of sTREM-1 differs among patients undergoing HA of the hip and those undergoing THA.  相似文献   
94.
《Biomarkers》2013,18(6):539-544
Introduction: Elevated neutrophil to lymphocyte ratio has been identified as a prognostic indicator in malignancies whereas; its association with extremity and trunk soft tissue sarcoma remain unclear. The aim of this study is to determine the utility of full blood neutrophil lymphocyte ratio (NLR) in preoperative diagnosis and its predictive value for survival in patients managed for soft tissue sarcoma of the trunk and extremities.

Method: 223 patients who presented with a soft tissue tumor were retrospectively reviewed. The study period was from January 2002–December 2009. Preoperative NLR as well as demographics, clinical and histopathological data were analysed.

Results: Full blood NLR was significantly higher in patient with a soft tissue sarcoma compared to benign soft tissue tumors (p < 0.001). Cox regression analysis demonstrated that elevated NLR >5 (p < 0.05) may be an adverse prognostic factor for Overall Survival.

Conclusion: The preoperative NLR is a simple, investigation predicting the preoperative diagnosis of a soft tissue sarcoma and a predictor of worse overall survival for patient with a soft tissue sarcoma.  相似文献   
95.
《Biomarkers》2013,18(5):435-440
Numerous efforts have been made to indentify reliable and predictive biomarkers to detect the early signs of smoking-induced lung disease. Using 6-month cigarette smoking in mice, we have established smoking-related interstitial fibrosis (SRIF). Microarray analyses and cytokine/chemokine biomarker measurements were made to select circulating microRNAs (miRNAs) biomarkers. We have demonstrated that specific miRNAs species (miR-125b-5p, miR-128, miR-30e, and miR-20b) were significantly changed, both in the lung tissue and in plasma, and exhibited mainstream (MS) exposure duration-dependent pathological changes in the lung. These findings suggested a potential use of specific circulating miRNAs as sensitive and informative biomarkers for smoking-induced lung disease.  相似文献   
96.
Abstract

Background: Despite the in vitro and in vivo evidence, studies are limited in evaluating whether chemokines are potential inflammatory mediators in response to air pollution exposure in humans.

Methods: We conducted a panel study coinciding with the Beijing Olympics, when temporary air pollution controls were implemented. We measured a suite of serum chemokines among healthy adults before, during and after the Olympics, respectively. Linear mixed-effect models were used to evaluate changes in chemokine levels over the three time periods.

Results: In response to the 50% drop in air pollution levels during the games, levels of RANTES, MCP-2, and TARC decreased by 25.8%, 20.9% and 35.3%, respectively (p?<?0.001) from pre-Olympics, and then increased by 45.8%, 34.9% and 61.5%, respectively (p?<?0.001) after the games when air pollution levels went up again. Similar patterns were observed in subgroup analyses by sex, age, smoking and body mass index. GRO-α and IL-8 decreased significantly during the games (22.5% and 30.4%), and increased non-significantly after the games. Eotaxin-1 only increased significantly from during- to post-games.

Conclusions: The strongest associations with air pollution levels were observed among RANTES, TARC and MCP-2. Those chemokines may play important roles in the air pollution-induced inflammatory pathway.  相似文献   
97.

Background

Individuals with deficiencies of pulmonary surfactant protein C (SP-C) develop interstitial lung disease (ILD) that is exacerbated by viral infections including respiratory syncytial virus (RSV). SP-C gene targeted mice (Sftpc -/-) lack SP-C, develop an ILD-like disease and are susceptible to infection with RSV.

Methods

In order to determine requirements for correction of RSV induced injury we have generated compound transgenic mice where SP-C expression can be induced on the Sftpc -/- background (SP-C/Sftpc -/-) by the administration of doxycycline (dox). The pattern of induced SP-C expression was determined by immunohistochemistry and processing by Western blot analysis. Tissue and cellular inflammation was measured following RSV infection and the RSV-induced cytokine response of isolated Sftpc +/+ and -/- type II cells determined.

Results

After 5 days of dox administration transgene SP-C mRNA expression was detected by RT-PCR in the lungs of two independent lines of bitransgenic SP-C/Sftpc -/- mice (lines 55.3 and 54.2). ProSP-C was expressed in the lung, and mature SP-C was detected by Western blot analysis of the lavage fluid from both lines of SP-C/Sftpc -/- mice. Induced SP-C expression was localized to alveolar type II cells by immunostaining with an antibody to proSP-C. Line 55.3 SP-C/Sftpc -/- mice were maintained on or off dox for 7 days and infected with 2.6x107 RSV pfu. On day 3 post RSV infection total inflammatory cell counts were reduced in the lavage of dox treated 55.3 SP-C/Sftpc -/- mice (p = 0.004). The percentage of neutrophils was reduced (p = 0.05). The viral titers of lung homogenates from dox treated 55.3 SP-C/Sftpc -/- mice were decreased relative to 55.3 SP-C/Sftpc -/- mice without dox (p = 0.01). The cytokine response of Sftpc -/- type II cells to RSV was increased over that of Sftpc +/+ cells.

Conclusions

Transgenic restoration of SP-C reduced inflammation and improved viral clearance in the lungs of SP-C deficient mice. The loss of SP-C in alveolar type II cells compromises their response to infection. These findings show that the restoration of SP-C in Sftpc -/- mice in response to RSV infection is a useful model to determine parameters for therapeutic intervention.  相似文献   
98.

Background

Aspergillus fumigatus conidia can exacerbate asthma symptoms. Phagocytosis of conidia is a principal component of the host antifungal defense. We investigated whether allergic airway inflammation (AAI) affects the ability of phagocytic cells in the airways to internalize the resting fungal spores.

Methods

Using BALB/c mice with experimentally induced AAI, we tested the ability of neutrophils, macrophages, and dendritic cells to internalize A. fumigatus conidia at various anatomical locations. We used light microscopy and differential cell and conidium counts to determine the ingestion potential of neutrophils and macrophages present in bronchoalveolar lavage (BAL). To identify phagocyte-conidia interactions in conducting airways, conidia labeled with tetramethylrhodamine-(5-(and-6))-isothiocyanate were administered to the oropharyngeal cavity of mice. Confocal microscopy was used to quantify the ingestion potential of Ly-6G+ neutrophils and MHC II+ antigen-presenting cells located in the intraepithelial and subepithelial areas of conducting airways.

Results

Allergen challenge induced transient neutrophil recruitment to the airways. Application of A. fumigatus conidia at the acute phase of AAI provoked recurrent neutrophil infiltration, and consequently increased the number and the ingestion potential of the airway neutrophils. In the absence of recurrent allergen or conidia provocation, both the ingestion potential and the number of BAL neutrophils decreased. As a result, conidia were primarily internalized by alveolar macrophages in both AAI and control mice at 24 hours post-inhalation. Transient influx of neutrophils to conducting airways shortly after conidial application was observed in mice with AAI. In addition, the ingestion potential of conducting airway neutrophils in mice with induced asthma exceeded that of control mice. Although the number of neutrophils subsequently decreased, the ingestion capacity remained elevated in AAI mice, even at 24 hours post-conidia application.

Conclusions

Aspiration of allergen to sensitized mice enhanced the ingestion potential of conducting airway neutrophils. Such activation primes neutrophils so that they are sufficient to control dissemination of non-germinating A. fumigatus conidia. At the same time, it can be a reason for the development of sensitivity to fungi and subsequent asthma exacerbation.  相似文献   
99.
Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4 inhibitor”. Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish “metabolic parasites”, like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted “antibiotics” to selectively starve cancer cells. Our results provide new support for the “seed and soil” hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.  相似文献   
100.
Abstract

The skin forms a life-sustaining barrier between the organism and physical environment. The physical barrier of skin is mainly localized in the stratum corneum (SC); however, nucleated epidermis also contributes to the barrier through tight, gap, and adherens junctions (AJs), as well as through desmosomes and cytoskeletal elements. Many inflammatory diseases, such as atopic dermatitis (AD) and psoriasis, are associated with barrier dysfunction. It is becoming increasingly clear that the skin barrier function is not only affected by inflammatory signals but that defects in structural components of the barrier may be the initiating event for inflammatory diseases. This view is supported by findings that mutations in filaggrin, a key structural epidermal barrier protein, cause the inflammatory skin disease AD, and that a loss of AJ components, namely epidermal p120 catenin or α-catenin results in skin inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号