首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3226篇
  免费   295篇
  国内免费   96篇
  2024年   11篇
  2023年   140篇
  2022年   184篇
  2021年   259篇
  2020年   242篇
  2019年   347篇
  2018年   230篇
  2017年   148篇
  2016年   143篇
  2015年   198篇
  2014年   187篇
  2013年   302篇
  2012年   162篇
  2011年   133篇
  2010年   103篇
  2009年   96篇
  2008年   96篇
  2007年   103篇
  2006年   81篇
  2005年   96篇
  2004年   56篇
  2003年   50篇
  2002年   64篇
  2001年   30篇
  2000年   16篇
  1999年   19篇
  1998年   16篇
  1997年   17篇
  1996年   5篇
  1995年   13篇
  1994年   11篇
  1993年   11篇
  1992年   10篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   5篇
  1982年   1篇
  1979年   4篇
  1978年   1篇
排序方式: 共有3617条查询结果,搜索用时 15 毫秒
101.
《MABS-AUSTIN》2013,5(5):600-613
Despite the clinical success of anti-tumor necrosis factor (TNF) therapies in the treatment of inflammatory conditions such as rheumatoid arthritis, Crohn disease and psoriasis, full control of the diseases only occurs in a subset of patients and there is a need for new therapeutics with improved efficacy against broader patient populations. One possible approach is to combine biological therapeutics, but both the cost of the therapeutics and the potential for additional toxicities needs to be considered. In addition to the various mediators of immune and inflammatory pathways, angiogenesis is reported to contribute substantially to the overall pathogenesis of inflammatory diseases. The combination of an anti-angiogenic agent with anti-TNF into one molecule could be more efficacious without the risk of severe immunosuppression. To evaluate this approach with our Zybody technology, we generated bispecific antibodies that contain an Ang2 targeting peptide genetically fused to the anti-TNF antibody adalimumab (Humira®). The bispecific molecules retain the binding and functional characteristics of the anti-TNF antibody, but with additional activity that neutralizes Ang2. In a TNF transgenic mouse model of arthritis, the bispecific anti-TNF-Ang2 molecules showed a dose-dependent reduction in both clinical symptoms and histological scores that were significantly better than that achieved by adalimumab alone.  相似文献   
102.
Although recent preclinical and clinical studies have demonstrated that recombinant human relaxin (rhRLX) may have important therapeutic potential in acute heart failure and chronic kidney diseases, the effects of acute rhRLX administration against renal ischaemia/reperfusion (I/R) injury have never been investigated. Using a rat model of 1‐hr bilateral renal artery occlusion followed by 6‐hr reperfusion, we investigated the effects of rhRLX (5 μg/Kg i.v.) given both at the beginning and after 3 hrs of reperfusion. Acute rhRLX administration attenuated the functional renal injury (increase in serum urea and creatinine), glomerular dysfunction (decrease in creatinine clearance) and tubular dysfunction (increase in urinary excretion of N‐acetyl‐β‐glucosaminidase) evoked by renal I/R. These beneficial effects were accompanied by a significant reduction in local lipid peroxidation, free radical‐induced DNA damage and increase in the expression/activity of the endogenous antioxidant enzymes Mn‐ and CuZn‐superoxide dismutases (SOD). Furthermore, rhRLX administration attenuated the increase in leucocyte activation, as suggested by inhibition of myeloperoxidase activity, intercellular‐adhesion‐molecule‐1 expression, interleukin (IL)‐1β, IL‐18 and tumour necrosis factor‐α production as well as increase in IL‐10 production. Interestingly, the reduced oxidative stress status and neutrophil activation here reported were associated with rhRLX‐induced activation of endothelial nitric oxide synthase and up‐regulation of inducible nitric oxide synthase, possibly secondary to activation of Akt and the extracellular signal‐regulated protein kinase (ERK) 1/2, respectively. Thus, we report herein that rhRLX protects the kidney against I/R injury by a mechanism that involves changes in nitric oxide signalling pathway.  相似文献   
103.
DNA methylation changes are known to occur in gastric cancers and in premalignant lesions of the gastric mucosae. In order to examine variables associated with methylation levels, we quantitatively evaluated DNA methylation in tumors, non-tumor gastric mucosae, and in gastric biopsies at promoters of 5 genes with methylation alterations that discriminate gastric cancers from non-tumor epithelia (EN1, PCDH10, RSPO2, ZIC1, and ZNF610). Among Colombian subjects at high and low risk for gastric cancer, biopsies from subjects from the high-risk region had significantly higher levels of methylation at these 5 genes than samples from subjects in the low risk region (p ≤ 0.003). When results were stratified by Helicobacter pylori infection status, infection with a cagA positive, vacA s1m1 strain was significantly associated with highest methylation levels, compared with other strains (p = 0.024 to 0.001). More severe gastric inflammation and more advanced precancerous lesions were also associated with higher levels of DNA methylation (p ≤ 0.001). In a multivariate model, location of residence of the subject and the presence of cagA and vacA s1m1 in the H. pylori strain were independent variables associated with higher methylation in all 5 genes. High levels of mononuclear cell infiltration were significantly related to methylation in PCDH10, RSPO2, and ZIC1 genes. These results indicate that for these genes, levels of methylation in precancerous lesions are related to H. pylori virulence, geographic region and measures of chronic inflammation. These genes seem predisposed to sustain significant quantitative changes in DNA methylation at early stages of the gastric precancerous process.  相似文献   
104.
NAFLD is an important public health issue closely associated with the pervasive epidemics of diabetes and obesity. Yet, despite NAFLD being among the most common of chronic liver diseases, the biological factors responsible for its transition from benign nonalcoholic fatty liver (NAFL) to NASH remain unclear. This lack of knowledge leads to a decreased ability to find relevant animal models, predict disease progression, or develop clinical treatments. In the current study, we used multiple mouse models of NAFLD, human correlation data, and selective gene overexpression of steroidogenic acute regulatory protein (StarD1) in mice to elucidate a plausible mechanistic pathway for promoting the transition from NAFL to NASH. We show that oxysterol 7α-hydroxylase (CYP7B1) controls the levels of intracellular regulatory oxysterols generated by the “acidic/alternative” pathway of cholesterol metabolism. Specifically, we report data showing that an inability to upregulate CYP7B1, in the setting of insulin resistance, results in the accumulation of toxic intracellular cholesterol metabolites that promote inflammation and hepatocyte injury. This metabolic pathway, initiated and exacerbated by insulin resistance, offers insight into approaches for the treatment of NAFLD.  相似文献   
105.
Histone deacetylase 4 (HDAC4) is a member of the HDACs family, its expression is closely related to the cell development. The cell is an independent living entity that undergoes proliferation, differentiation, senescence, apoptosis, and pathology, and each process has a strict and complex regulatory system. With deepening of its research, the expression of HDAC4 is critical in the life process. This review focuses on the posttranslational modification of HDAC4 in cell biology, providing an important target for future disease treatment.  相似文献   
106.
107.
Some human observational studies have suggested an anti-inflammatory role of osteocalcin (OCN). An inflammatory protocol using interferon-γ and tumor necrosis factor-α (10 ng/ml) was employed to examine the acute (24 hr) and chronic (144 hr) effects of uncarboxylated OCN (ucOCN) in commercial, primary, subcultured human aortic endothelial cells (HAEC), and human smooth muscle cells (HASMCs). The inflammatory protocol increased phosphorylation of intracellular signaling proteins (CREB, JNK, p38, ERK, AKT, STAT3, STAT5) and increased secretion of adhesion markers (vascular cell adhesion molecule-1, intracellular adhesion molecule-1, monocyte chemoattractant protein-1) and proinflammatory cytokines (interleukin-6 [IL-6], IL-8). After acute inflammation, there were no additive or reductive effects of ucOCN in either cell type. Following chronic inflammation, ucOCN did not affect cell responses, nor did it appear to have any pro- or anti-inflammatory effects when administered acutely or chronically on its own in either cell type. Additionally, ucOCN did not affect lipopolysaccharide (LPS)-induced acute inflammation in HAECs or HASMCs. The findings of this study do not support a causal role for OCN within the models of vascular inflammation chosen. Further confirmatory studies are warranted.  相似文献   
108.
Accumulating evidence suggests that inflammation has a key role in the pathogenesis of osteoarthritis (OA). Nitric oxide (NO) has been established as one of the major inflammatory mediators in OA and drives many pathological changes during the development and progression of OA. Excessive production of NO in chondrocytes promotes cartilage destruction and cellular injury. The synthesis of NO in chondrocytes is catalyzed by inducible NO synthase (iNOS), which is thereby an attractive therapeutic target for the treatment of OA. A number of direct and indirect iNOS inhibitors, bioactive compounds, and plant-derived small molecules have been shown to exhibit chondroprotective effects by suppressing the expression of iNOS. Many of these iNOS inhibitors hold promise for the development of new, disease-modifying therapies for OA; however, attempts to demonstrate their success in clinical trials are not yet successful. Many plant extracts and plant-derived small molecules have also shown promise in animal models of OA, though further studies are needed in human clinical trials to confirm their therapeutic potential. In this review, we discuss the role of iNOS in OA pathology and the effects of various iNOS inhibitors in OA.  相似文献   
109.
Despite increased social awareness, marketing restraints, tobacco taxation, and available smoking cessation rehab programs, active and passive smoking remain a worldwide challenging epidemic and a key risk factor for cardiovascular diseases development. Although cardiovascular (CV) protection is more pronounced in women than in men due to estrogenic effects, tobacco cigarette smoking exposure seems to alter this protection by modulating estrogen actions via undefined mechanisms. Premenopausal cigarette smoking women are at higher risk of adverse CV effects than non-smokers. In this study, we investigated the impact of cigarette smoking on early CV injury after myocardial infarction (MI) in non-menopausal female mice. Aortic arch calcification, fibrosis, reactive oxygen species, and gene expression of inflammatory and calcification genes were exaggerated in mice exposed to cigarette smoke (CS). These findings suggest that aortic injury following MI, characterized by vascular smooth muscle cells transdifferentiation, calcification, inflammation, and collagen deposition but not cardiac dysfunction is exacerbated with CS exposure. The novel findings of this study highlight the importance of aortic injury on short and long-term prognosis in CS-exposed MI females. Linking those findings to estrogen alteration is probable and entails investigation.  相似文献   
110.
Pulmonary arterial hypertension (PAH) is a progressive disorder characterized by vascular remodeling, endothelial cell (EC) dysfunction, and inflammation. The roles of microRNAs have received much critical attention. Thus, this study was attempted to show the biological function of miR-181a/b-5p (miR-181a/b) in monocrotaline (MCT)-induced PAH. Here, rats injected with MCT were used as PAH models. The expression of miR-181a/b and its effect on PAH pathologies were examined using miR-181a/b overexpression lentivirus. A luciferase reporter analysis was performed to measure the relationships between miR-181a/b and endocan. Additionally, primary rat pulmonary arterial endothelial cells (rPAECs) treated with tumor necrosis factor-α (TNF-α) were employed to further validate the regulatory mechanism of miR-181a/b in vitro. Our results showed that miR-181a/b expression was reduced in PAH, and its upregulation significantly attenuated the short survival period, right ventricular systolic pressure and mean pulmonary artery pressure increments, right ventricular remodeling, and lung injury. Furthermore, the increase of intercellular cell adhesion molecule-1 (ICAM1) and vascular cell adhesion molecule-1 (VCAM1) in PAH rats was inhibited by miR-181a/b overexpression. Similarly, our in vitro results showed that inducing miR-181a/b suppressed TNF-α-stimulated increase of ICAM1 and VCAM1 in rPAECs. Importantly, the increased expression of endocan in PAH model or TNF-α-treated rPAECs was restored by miR-181a/b upregulation. Further analysis validated the direct targeting relationships between miR-181a/b and endocan. Collectively, this study suggests that miR-181a/b targets endocan to ameliorate PAH symptoms by inhibiting inflammatory states, shedding new lights on the prevention and treatment of PAH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号