首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   233篇
  免费   14篇
  国内免费   1篇
  2024年   1篇
  2023年   3篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   14篇
  2018年   11篇
  2017年   15篇
  2016年   9篇
  2015年   9篇
  2014年   16篇
  2013年   25篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   13篇
  2008年   6篇
  2007年   5篇
  2006年   10篇
  2005年   6篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   8篇
  1999年   4篇
  1998年   2篇
  1996年   2篇
  1995年   3篇
  1993年   4篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有248条查询结果,搜索用时 15 毫秒
41.
This study evaluated the performance of a walking speed estimation system based on using an inertial measurement unit (IMU), a combination of accelerometers and gyroscopes. The walking speed estimation algorithm segments the walking sequence into individual stride cycles (two steps) based on the inverted pendulum-like behaviour of the stance leg during walking and it integrates the angular velocity and linear accelerations of the shank to determine the displacement of each stride. The evaluation was performed in both treadmill and overground walking experiments with various constraints on walking speed, step length and step frequency to provide a relatively comprehensive assessment of the system. Promising results were obtained in providing accurate and consistent walking speed/step length estimation in different walking conditions. An overall percentage root mean squared error (%RMSE) of 4.2 and 4.0% was achieved in treadmill and overground walking experiments, respectively. With an increasing interest in understanding human walking biomechanics, the IMU-based ambulatory system could provide a useful walking speed/step length measurement/control tool for constrained walking studies.  相似文献   
42.
Medial knee osteoarthritis is a debilitating disease. Surgical and conservative interventions are performed to manage its progression via reduction of load on the medial compartment or equivalently its surrogate measure, the external adduction moment. However, some studies have questioned a correlation between the medial load and adduction moment. Using a musculoskeletal model of the lower extremity driven by kinematics–kinetics of asymptomatic subjects at gait midstance, we aim here to quantify the relative effects of changes in the knee adduction angle versus changes in the adduction moment on the joint response and medial/lateral load partitioning. The reference adduction rotation of 1.6° is altered by ±1.5° to 3.1° and 0.1° or the knee reference adduction moment of 17 N m is varied by ±50% to 25.5 N m and 8.5 N m. Quadriceps, hamstrings and tibiofemoral contact forces substantially increased as adduction angle dropped and diminished as it increased. The medial/lateral ratio of contact forces slightly altered by changes in the adduction moment but a larger adduction rotation hugely increased this ratio from 8.8 to a 90 while in contrast a smaller adduction rotation yielded a more uniform distribution. If the aim in an intervention is to diminish the medial contact force and medial/lateral load ratio, a drop of 1.5° in adduction angle is much more effective (causing respectively 12% and 80% decreases) than a reduction of 50% in the adduction moment (causing respectively 4% and 13% decreases). Substantial role of changes in adduction angle is due to the associated alterations in joint nonlinear passive resistance. These findings explain the poor correlation between knee adduction moment and tibiofemoral compartment loading during gait suggesting that the internal load partitioning is dictated by the joint adduction angle.  相似文献   
43.
The biomechanical mechanism of lateral trunk lean gait employed to reduce external knee adduction moment (KAM) for knee osteoarthritis (OA) patients is not well known. This mechanism may relate to the center of mass (COM) motion. Moreover, lateral trunk lean gait may affect motor control of the COM displacement. Uncontrolled manifold (UCM) analysis is an evaluation index used to understand motor control and variability of the motor task. Here we aimed to clarify the biomechanical mechanism to reduce KAM during lateral trunk lean gait and how motor variability controls the COM displacement. Twenty knee OA patients walked under two conditions: normal and lateral trunk lean gait conditions. UCM analysis was performed with respect to the COM displacement in the frontal plane. We also determined how the variability is structured with regards to the COM displacement as a performance variable. The peak KAM under lateral trunk lean gait was lower than that under normal gait. The reduced peak KAM observed was accompanied by medially shifted knee joint center, shortened distance of the center of pressure to knee joint center, and shortened distance of the knee–ground reaction force lever arm during the stance phase. Knee OA patients with lateral trunk lean gait could maintain kinematic synergy by utilizing greater segmental configuration variance to the performance variable. However, the COM displacement variability of lateral trunk lean gait was larger than that of normal gait. Our findings may provide clinical insights to effectively evaluate and prescribe gait modification training for knee OA patients.  相似文献   
44.
Translational vertebral motion during functional tasks manifests itself in dynamic loci for center of rotation (COR). A shift of COR affects moment arms of muscles and ligaments; consequently, muscle and joint forces are altered. Based on posture- and level-specific trends of COR migration revealed by in vivo dynamic radiography during functional activities, it was postulated that the instantaneous COR location for a particular joint is optimized in order to minimize the joint reaction forces. A musculoskeletal multi-body model was employed to investigate the hypotheses that (1) a posterior COR in upright standing and (2) an anterior COR in forward flexed posture leads to optimized lumbar joint loads. Moreover, it was hypothesized that (3) lower lumbar levels benefit from a more superiorly located COR.The COR in the model was varied from its initial position in posterior-anterior and inferior-superior direction up to ±6 mm in steps of 2 mm. Movement from upright standing to 45° forward bending and backwards was simulated for all configurations. Joint reaction forces were computed at levels L2L3 to L5S1. Results clearly confirmed hypotheses (1) and (2) and provided evidence for the validity of hypothesis (3), hence offering a biomechanical rationale behind the migration paths of CORs observed during functional flexion/extension movement. Average sensitivity of joint force magnitudes to an anterior shift of COR was +6 N/mm in upright and −21 N/mm in 30° forward flexed posture, while sensitivity to a superior shift in upright standing was +7 N/mm and −8 N/mm in 30° flexion. The relation between COR loci and joint loading in upright and flexed postures could be mainly attributed to altered muscle moment arms and consequences on muscle exertion. These findings are considered relevant for the interpretation of COR migration data, the development of numerical models, and could have an implication on clinical diagnosis and treatment or the development of spinal implants.  相似文献   
45.
Three vacuum‐deposited donor–acceptor–acceptor (d–a–a') small molecule donors are studied with different side chains attached to an asymmetric heterotetracene donor block for use in high efficiency organic photovoltaics (OPVs). The donor with an isobutyl side chain yields the highest crystal packing density compared to molecules with 2‐ethylhexyl or n‐butyl chains, leading to the largest absorption coefficient and short circuit current in an OPV. It also exhibits a higher fill factor, consistent with its preferred out‐of‐plane molecular π–π stacking arrangement that facilitates charge transport in the direction perpendicular to the substrate. A power conversion efficiency of 9.3 ± 0.5% is achieved under 1 sun intensity, AM 1.5 G simulated solar illumination, which is significantly higher than 7.5 ± 0.4% of the other two molecules. These results indicate that side chain modification of d–a–a' small molecules offers an effective approach to control the crystal packing configuration, thereby improving the device performance.  相似文献   
46.
47.

Purpose

Today's orthotics should be designed to apply the external orthosis moment to the knee joint solely during the stance phase instead of the entire gait cycle. The aim of this study was to validate the reliability of a simple device for measuring forces at the leg–orthosis interface and describe the behavior of an innovating dynamic unloader knee brace built to interrupt its mechanical action during large knee flexion (swing phase of gait).

Methods

A compression testing machine was used to apply known (standard) forces to the device (modeled forces) and the results were compared.

Results

The low absolute mean bias (4%), the narrow agreement limits associated with the Bland and Altman analysis as well as the significant linear correlation (r=0.99; p<0.001) validate the agreement between standard and modeled forces. Likewise, the low standard error of measurement between trials (1.3%) and the intraclass correlation coefficient (1.00) reflect high test-retest reliability.

Conclusion

These results demonstrate the validity of the proposed device for measuring constraints induced by the dynamic unloader knee brace. An example of an application is provided through an orthosis moment calculation using kinematic data, which reveal a changeable mechanical action, necessary to improve comfort resulting in potentially better compliance.  相似文献   
48.
Acoustic cavitation has been widely explored for both diagnostic and therapeutic purposes. Ultrasound-induced cavitation, including inertial cavitation and non-inertial cavitation, can cause microstreaming, microjet, and free radical formation. The acoustic cavitation effects on endothelial cells have been studied for drug delivery, gene therapy, and cancer therapy. Studies have demonstrated that the ultrasound-induced cavitation effect can treat cancer, ischaemia, diabetes, and cardiovascular diseases. In this minireview, we will review the impact of ultrasound-induced cavitation on the endothelial cells such as cell permeability, cell proliferation, gene expression regulation, cell viability, hemostasis interaction, oxygenation, and variation in the level of calcium ions, ceramide, nitric oxide (NO) and nitric oxide synthase (NOS) activity. The applications of these effects and the cavitation mechanism involved will be summarized, demonstrating the important role of acoustic cavitation in non-invasive ultrasound treatment of various physiological conditions.  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号