首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   0篇
  国内免费   2篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   8篇
  2018年   2篇
  2015年   4篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   2篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   7篇
  2006年   10篇
  2005年   2篇
  2004年   6篇
  2003年   6篇
  2002年   11篇
  2001年   8篇
  2000年   4篇
  1999年   3篇
  1998年   5篇
  1997年   4篇
  1995年   3篇
排序方式: 共有131条查询结果,搜索用时 171 毫秒
81.
Adaptive Patch Searching Strategies in Fragmented Landscapes   总被引:1,自引:0,他引:1  
The search strategies dispersers employ to search for new habitat patches affect individuals’ search success and subsequently landscape connectivity and metapopulation viability. Some evidence indicates that individuals within the same species may display a variety of behavioural patch searching strategies rather than one species-specific strategy. This may result from landscape heterogeneity. We modelled the evolution of individual patch searching strategies in different landscapes. Specifically, we analysed whether evolution can favour different, co-existing, behavioural search strategies within one population and to what extent this coexistence of multiple strategies was dependent on landscape configuration. Using an individual-based simulation model, we studied the evolution of patch searching strategies in three different landscape configurations: uniform, random and clumped. We found that landscape configuration strongly influenced the evolved search strategy. In uniform landscapes, one fixed search strategy evolved for the entire spatially structured population, while in random and clumped landscapes, a set of different search strategies emerged. The coexistence of several search strategies also strongly depended on the dispersal mortality. We show that our result can affect landscape connectivity and metapopulation dynamics. Co-ordinating editor: N. Yamamura  相似文献   
82.
Synopsis The routine swimming speed (S) of three groups of 4, 9 and 32 cm total length (LT) juvenile cod (Gadus morhua) was quantified in the laboratory at 6 – 10 different temperatures (T) between 3.2 and 16.7°C. At temperatures between 5 and 15°C, mean group S increased exponentially with increasing T (S=a ebT) and the effect of temperature (b = 0.082, Q10 = 2.27) was not significantly different among the groups (over the 8-fold difference in fish sizes of early- and post-settlement juveniles). Differences in mean S among individuals within each group were quite large (coefficient of variation = 40 – 80%). Swimming data for juveniles and those collected for groups of 0.4, 0.7 and 0.9 cm standard length (LS) larvae were combined to assess the effect of body size on S. At 8°C, S (mm s−1) increased with LS (mm) according to: S = 0.26LSΦ−5.28LS−1, where Φ = 1.55LS−0.08. Relative S (body lengths s−1) was related to LS by a dome-shaped relationship having a maximum value (0.49 body lengths s−1) at 18.5 – 19 mm LS corresponding to the sizes of fish at the end of larval-juvenile metamorphosis. Previous larval cod IBM’s using a cruise-predator mode likely overestimated rates of foraging (prey searching and encounters) by a factor of ~2, whereas foraging rates in pause-travel models are closer to estimates of swimming velocities obtained in this and other laboratory studies.  相似文献   
83.
84.
85.
We present an individual-based, spatially-explicit model of the dynamics of a small mammal and its resource. The life histories of each individual animal are modeled separately. The individuals can have the status of residents or wanderers and belong to behaviorally differing groups of juveniles or adults and males or females. Their territory defending and monogamous behavior is taken into consideration. The resource, green vegetation, grows depending on seasonal climatic characteristics and is diminished due to the herbivore's grazing. Other specifics such as a varying personal energetic level due to feeding and starvation of the individuals, mating preferences, avoidance of competitors, dispersal of juveniles, as a result of site overgrazing, etc., are included in the model. We determined model parameters from real data for the species Microtus ochrogaster (prairie vole). The simulations are done for a case of an enclosed habitat without predators or other species competitors. The goal of the study is to find the relation between size of habitat and population persistence. The experiments with the model show the populations go extinct due to severe overgrazing, but that the length of population persistence depends on the area of the habitat as well as on the presence of fragmentation. Additionally, the total population size of the vole population obtained during the simulations exhibits yearly fluctuations as well as multi-yearly peaks of fluctuations. This dynamics is similar to the one observed in prairie vole field studies.  相似文献   
86.
The golden hamster has been described as exhibiting estrous cycle synchrony caused by social dominance. This has recently been reexamined by J. C. Schank (2000, Horm. Behav. 38, 94-101) with the aid of computer simulations. He concluded that there is no evidence for cycle synchrony among golden hamsters. In the present article we confirm this theoretical approach with the help of long-term experiments. Indeed, estrous cycle asynchrony was observed. Singly housed female golden hamsters in phase with their neighbors and in physical contact desynchronized their 4-day cycles after 2 or 3 weeks. Asynchrony was caused mainly by stochastic 5-day cycles. Statistical analysis was performed using a Monte-Carlo bootstrap approach. Based on the empirical data, an individual-based computer model was developed to simulate the dynamics of cycle desynchronization. Potential advantages were deduced for the population level. It emerged that estrous cycle asynchrony led to higher reproductive success for females where the probability of fertilization was low (e.g., after hibernation, poor habitat).  相似文献   
87.
We investigated a mathematical model of the dynamics of the ecological system consisting of two competing perennial species, each of which leads a sedentary life. It is an individual-based model, in which the growth of each individual is described. The rate of this growth is weakened by competition from neighboring individuals. The strength of the competitors' influence depends on their size and distance to them. The conditions, in which the competitive exclusion of one of the competitors and the coexistence of both competitors take place are provided. The influence of the parameters responsible for the strength of competition, the degree of competitive asymmetry, and consideration of the importance of specific elements of the spatial structure of this ecological system on the results of the competition were analyzed. Both species co-exist when they are equal competitors. Permanent coexistence is possible only when interspecific competition is weaker than intraspecific. When interspecific competition is stronger, the coexistence of equal interspecific competitors is random. Both species have equal probability of extinction. If species are not equal competitors, the stronger one wins. This result can be modified by different strengths of intraspecific competition. The weaker interspecific competitor can permanently coexist with stronger one, when its individuals suffer stronger intraspecific competition.  相似文献   
88.
89.
90.
The rhythm of savanna patch dynamics   总被引:1,自引:0,他引:1  
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号