首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15113篇
  免费   1451篇
  国内免费   969篇
  17533篇
  2024年   51篇
  2023年   370篇
  2022年   403篇
  2021年   513篇
  2020年   631篇
  2019年   775篇
  2018年   766篇
  2017年   630篇
  2016年   739篇
  2015年   668篇
  2014年   735篇
  2013年   1606篇
  2012年   628篇
  2011年   678篇
  2010年   588篇
  2009年   654篇
  2008年   763篇
  2007年   725篇
  2006年   688篇
  2005年   612篇
  2004年   606篇
  2003年   544篇
  2002年   506篇
  2001年   358篇
  2000年   333篇
  1999年   263篇
  1998年   268篇
  1997年   233篇
  1996年   181篇
  1995年   155篇
  1994年   125篇
  1993年   104篇
  1992年   105篇
  1991年   60篇
  1990年   54篇
  1989年   42篇
  1988年   30篇
  1987年   26篇
  1986年   17篇
  1985年   27篇
  1984年   54篇
  1983年   38篇
  1982年   49篇
  1981年   38篇
  1980年   23篇
  1979年   15篇
  1978年   16篇
  1977年   14篇
  1974年   6篇
  1973年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
The catalytic activity of Staphylococcus aureus sortase A (SaSrtA) is dependent on Ca2+, because binding of Ca2+ to Glu residues distal to the active site stabilizes the substrate binding site. To obtain Ca2+‐independent SaSrtA, we substituted two Glu residues in the Ca2+‐binding pocket (Glu105 and Glu108). Although single mutations decreased SaSrtA activity, mutations of both Glu105 and Glu108 resulted in Ca2+‐independent activity. Kinetic analysis suggested that the double mutations affect the substrate binding site, without affecting substrate specificity. This approach will allow us to develop SaSrtA variants suitable for various applications, including in vivo site‐specific protein modification and labeling. Biotechnol. Bioeng. 2012; 109: 2955–2961. © 2012 Wiley Periodicals, Inc.  相似文献   
92.
The p53‐MDM2 complex is both a major target for cancer drug development and a valuable model system for computational predictions of protein‐ligand binding. To investigate the accuracy of molecular simulations of MDM2 and its complex with p53, we performed a number of long (200 ns to 1 µs) explicit‐solvent simulations using a range of force fields. We systematically compared nine popular force fields (AMBER ff03, ff12sb, ff14sb, ff99sb, ff99sb‐ildn, ff99sb‐ildn‐nmr, ff99sb‐ildn‐phi, CHARMM22*, and CHARMM36) against experimental chemical shift data, and found similarly accurate results, with microsecond simulations achieving better agreement compared to 200‐ns trajectories. Although the experimentally determined apo structure has a closed binding cleft, simulations in all force fields suggest the apo state of MDM2 is highly flexible, and able to sample holo‐like conformations, consistent with a conformational selection model. Initial structuring of the MDM2 lid region, known to competitively bind the binding cleft, is also observed in long simulations. Taken together, these results show molecular simulations can accurately sample conformations relevant for ligand binding. We expect this study to inform future computational work on folding and binding of MDM2 ligands. Proteins 2015; 83:1665–1676. © 2015 Wiley Periodicals, Inc.  相似文献   
93.
94.
Ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) plays a critical role in sustaining life by catalysis of carbon fixation in the Calvin–Benson pathway. Incomplete knowledge of the assembly pathway of chloroplast Rubisco has hampered efforts to fully delineate the enzyme's properties, or seek improved catalytic characteristics via directed evolution. Here we report that a Mu transposon insertion in the Zea mays (maize) gene encoding a chloroplast dimerization co‐factor of hepatocyte nuclear factor 1 (DCoH)/pterin‐4α‐carbinolamine dehydratases (PCD)‐like protein is the causative mutation in a seedling‐lethal, Rubisco‐deficient mutant named Rubisco accumulation factor 2 (raf21). In raf2 mutants newly synthesized Rubisco large subunit accumulates in a high‐molecular weight complex, the formation of which requires a specific chaperonin 60‐kDa isoform. Analogous observations had been made previously with maize mutants lacking the Rubisco biogenesis proteins RAF1 and BSD2. Chemical cross‐linking of maize leaves followed by immunoprecipitation with antibodies to RAF2, RAF1 or BSD2 demonstrated co‐immunoprecipitation of each with Rubisco small subunit, and to a lesser extent, co‐immunoprecipitation with Rubisco large subunit. We propose that RAF2, RAF1 and BSD2 form transient complexes with the Rubisco small subunit, which in turn assembles with the large subunit as it is released from chaperonins.  相似文献   
95.
  相似文献   
96.
Ra-KLP, a 75 amino acid protein secreted by the salivary gland of the brown ear tick Rhipicephalus appendiculatus has a sequence resembling those of Kunitz/BPTI proteins. We report the detection, purification and characterization of the function of Ra-KLP. In addition, determination of the three-dimensional crystal structure of Ra-KLP at 1.6 Å resolution using sulphur single-wavelength anomalous dispersion reveals that much of the loop structure of classical Kunitz domains, including the protruding protease-binding loop, has been replaced by β-strands. Even more unusually, the N-terminal portion of the polypeptide chain is pinned to the ”Kunitz head” by two disulphide bridges not found in classical Kunitz/BPTI proteins. The disulphide bond pattern has been further altered by the loss of the bridge that normally stabilizes the protease-binding loop. Consistent with the conversion of this loop into a β-strand, Ra-KLP shows no significant anti-protease activity; however, it activates maxiK channels in an in vitro system, suggesting a potential mechanism for regulating host blood supply during feeding.  相似文献   
97.
98.
99.
Mycosin-1 protease (MycP1) is a serine protease anchored to the inner membrane of Mycobacterium tuberculosis, and is essential in virulence factor secretion through the ESX-1 type VII secretion system (T7SS). Bacterial physiology studies demonstrated that MycP1 plays a dual role in the regulation of ESX-1 secretion and virulence, primarily through cleavage of its secretion substrate EspB. MycP1 contains a putative N-terminal inhibitory propeptide and a catalytic triad of Asp-His-Ser, classic hallmarks of a subtilase family serine protease. The MycP1 propeptide was previously reported to be initially inactive and activated after prolonged incubation. In this study, we have determined crystal structures of MycP1 with (MycP124-422) and without (MycP163-422) the propeptide, and conducted EspB cleavage assays using the two proteins. Very high structural similarity was observed in the two crystal structures. Interestingly, protease assays demonstrated positive EspB cleavage for both proteins, indicating that the putative propeptide does not inhibit protease activity. Molecular dynamic simulations showed higher rigidity in regions guarding the entrance to the catalytic site in MycP124-422 than in MycP163-422, suggesting that the putative propeptide might contribute to the conformational stability of the active site cleft and surrounding regions.  相似文献   
100.
Malonyl‐CoA decarboxylase (MCD) can control the level of malonyl‐CoA in cell through the decarboxylation of malonyl‐CoA to acetyl‐CoA, and plays an essential role in regulating fatty acid metabolism, thus it is a potential target for drug discovery. However, the interactions of MCD with CoA derivatives are not well understood owing to unavailable crystal structure with a complete occupancy in the active site. To identify the active site of MCD, molecular docking and molecular dynamics simulations were performed to explore the interactions of human mitochondrial MCD (HmMCD) and CoA derivatives. The findings reveal that the active site of HmMCD indeed resides in the prominent groove which resembles that of CurA. However, the binding modes are slightly different from the one observed in CurA due to the occupancy of the side chain of Lys183 from the N‐terminal helical domain instead of the adenine ring of CoA. The residues 300 ? 305 play an essential role in maintaining the stability of complex mainly through hydrogen bond interactions with the pyrophosphate moiety of acetyl‐CoA. Principle component analysis elucidates the conformational distribution and dominant concerted motions of HmMCD. MM_PBSA calculations present the crucial residues and the major driving force responsible for the binding of acetyl‐CoA. These results provide useful information for understanding the interactions of HmMCD with CoA derivatives. Proteins 2016; 84:792–802. © 2016 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号