首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   985篇
  免费   222篇
  国内免费   392篇
  2024年   13篇
  2023年   58篇
  2022年   42篇
  2021年   53篇
  2020年   94篇
  2019年   93篇
  2018年   85篇
  2017年   81篇
  2016年   85篇
  2015年   74篇
  2014年   58篇
  2013年   95篇
  2012年   70篇
  2011年   69篇
  2010年   48篇
  2009年   57篇
  2008年   65篇
  2007年   56篇
  2006年   53篇
  2005年   36篇
  2004年   31篇
  2003年   31篇
  2002年   36篇
  2001年   28篇
  2000年   19篇
  1999年   17篇
  1998年   21篇
  1997年   9篇
  1996年   8篇
  1995年   10篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   7篇
  1990年   12篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1980年   4篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1958年   2篇
排序方式: 共有1599条查询结果,搜索用时 18 毫秒
911.
Heavy metals (HMs) pollution is a serious problem, worldwide. The present study focuses on HMs removal (HMs mobility restricted within soil) by microbial induced mineral precipitation (MIMP) using indigenous isolates. Indigenous isolates were identified as Bacillus subtilis C(225)(MK334652), Oceanobacillus indicireducens 5(225)(MK334653), and Bacillus pumilus 7(225)(MK334654) by 16S-rRNA from HMs polluted industrial-soil (soil-225) that is used for bioremediation. The studied soil contained high level (mg/kg) of Cr(307.41?±?1.02), Cu(576.35?±?1.02), and Zn(708.81?±?1.50) as per Taiwan permissible limit (TPL) and/or Canadian Soil Quality Guidelines (CSQG). Minimum inhibitory concentration (MIC) of Bacillus species were higher compare to Oceanobacillus. Bioavailable-fraction (F1) of HMs (Cr/Cu/Zn) in untreated 225-soil was noticed to be higher compared to F2–F5 fraction. Bacillus subtilis C(225) are more efficient for HMs-mineralization, compared to other isolates where Cr/Cu/Zn immobilized within soil, transforming from bioavailable-fraction (F1) (high-mobility) (60–90% reduction) to residual-fraction F5 (low-mobility) (50–80% increment). Organic-bound-fraction (F4) (medium-mobility) of Cr increased (42.66?±?2.1%), compared to Cu/Zn, by Bacillus subtilis C(225). Urease (40.8%) and dehydrogenase (8.3%) activity increased in bio-remediated soil, compared to control. MIMP of HMs by ingenious bacteria reflects the transformation-pathway from F1 to F5 of HMs to fix strongly within soils with inadequate mobility. Thus, MIMP by indigenous microbe can be applicable for HMs stabilization/removal in contaminated soil for ecofriendly environmental cleanup.  相似文献   
912.
913.
Abstract

Chemically inactivated tetanus toxin (tetanus toxoid, TT), purified from cultures of a virulent Clostridium tetani strain, is the active pharmaceutical ingredient of anti-tetanus vaccines. Culture clarification for TT production and is usually performed by filtration-based techniques. Final clarification of the culture supernatant is achieved by passage through 0.2?µm pore size filtering membranes. Large particles removal (primary clarification) before final filtration (secondary clarification) reduces costs of the overall clarification process. With this aim, chitosan-induced particle aggregation was assessed as an alternative for primary clarification. Three chitosan variants were tested with similar results. Optimal clarification of culture supernatant was achieved by the addition of 8?mg chitosan per l of culture. Extrapolation analysis of filter sizing results indicate that 100?l of chitosan-treated supernatant can be finally filtered with a 0.6 m2 normal filtration cartridge of 0.45?+?0.2?µm pore size. The clarified material is compatible with current standard downstream processing techniques for TT purification. Thus, chitosan-induced particle aggregation is a suitable operation for primary clarification.  相似文献   
914.
The binding of lithium and boron, at normal physiological levels, to plasma proteins has been investigated by the techniques of precipitation with ethyl alcohol and gel chromatography. Assays of lithium and boron were made by thermal neutron activation and mass spectrometric assay of3He and4He. Results of alcohol precipitation experiments for plasma from two apparently healthy donors showed that 13 ± 4% and 16 ± 3% of the lithium in plasma is protein bound, but essentially no boron is bound under the conditions used. We believe that because of denaturation of proteins which occurs during alcohol precipitation, these percentages represent lithium and boron tightly bound to protein molecules. The results of the gelchromatography experiment, on the other hand, showed that lithium and boron are bound to a wide range of plasma proteins, from low (∼ 60,000 amu) to high (∼ 1,000,000 amu) molecular weights, and to very low- (∼ 6000 amu) molecular-weight ligands. Although a clear identification of the specific proteins which bind lithium and boron cannot be made at present, some possibilities can be suggested. Certain commercial equipment, instruments, or materials are identified in this article to specify adequately the experimental procedure. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.  相似文献   
915.
Microbially produced gamma‐polyglutamic acid (γ‐PGA) is a commercially important biopolymer with many applications in biopharmaceutical, food, cosmetic and waste‐water treatment industries. Owing to its increasing demand in various industries, production of γ‐PGA is well documented in the literature, however very few methods have been reported for its recovery. In this paper, we report a novel method for the selective recovery and purification of γ‐PGA from cell‐free fermentation broth of Bacillus licheniformis. The cell‐free fermentation broth was treated with divalent copper ions, resulting in the precipitation of γ‐PGA, which was collected as a pellet by centrifugation. The pellet was resolubilized and dialyzed against de‐ionized water to obtain the purified γ‐PGA biopolymer. The efficiency and selectivity of γ‐PGA recovery was compared with ethanol precipitation method. We found that 85% of the original γ‐PGA content in the broth was recovered by copper sulfate‐induced precipitation, compared to 82% recovery by ethanol precipitation method. Since ethanol is a commonly used solvent for protein precipitation, the purity of γ‐PGA precipitate was analyzed by measuring proteins that co‐precipitated with γ‐PGA. Of the total proteins present in the broth, 48% proteins were found to be co‐precipitated with γ‐PGA by ethanol precipitation, whereas in copper sulfate‐induced precipitation, only 3% of proteins were detected in the final purified γ‐PGA, suggesting that copper sulfate‐induced precipitation offers better selectivity than ethanol precipitation method. Total metal content analysis of the purified γ‐PGA revealed the undetectable amount of copper ions, whereas other metal ions detected were in low concentration range. The purified γ‐PGA was characterized using infrared spectroscopy. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
916.
917.
Locating optimal protein precipitation conditions for complex biological feed materials is problematic. This article describes the application of a series of high‐throughput platforms for the rapid identification and selection of conditions for the precipitation of an IgG4 monoclonal antibody (mAb) from a complex feedstock using only microliter quantities of material. The approach uses 96‐microwell filter plates combined with high‐throughput analytical methods and a method for well volume determination for product quantification. The low material, time and resource requirements facilitated the use of a full factorial Design of Experiments (DoE) for the rapid investigation into how critical parameters impact the IgG4 precipitation. To aid the DoE, a set of preliminary range‐finding studies were conducted first. Data collected through this approach describing Polyethylene Glycol (PEG) precipitation of the IgG4 as a function of mAb concentration, precipitant concentration, and pH are presented. Response surface diagrams were used to explore interactions between parameters and to inform selection of the most favorable conditions for maximum yield and purification. PEG concentrations required for maximum yield and purity were dependant on the IgG4 concentration; however, concentrations of 14 to 20% w/v, pH 6.5, gave optimal levels of yield and purity. Application of the high‐throughput approach enabled 1,155 conditions to be examined with less than 1 g of material. The level of insights gained over such a short time frame is indicative of the power of microwell experimentation in allowing the rapid identification of appropriate processing conditions for key bioprocess operations. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
918.
919.
Fullerene‐based carbons are promising electrode materials for supercapacitors due to their unique carbon structures and tunable architectures at the molecular level. By introducing various functional groups with many elements on the fullerene cages, diverse in situ metal/nonmetal‐doped carbon materials with enhanced pseudocapacitances and/or double layer capacitances can be prepared. In the present work, a fullerene derivative, ferrocenylpyrrolidine C60, containing nitrogen and iron, is chosen as the only precursor. A unique microstructure is fabricated by a liquid–liquid interfacial precipitation process. Subsequently, a facile, one‐step annealing of the microstructure at different temperatures is performed. A series of in situ N and Fe‐codoped laminated 3D hierarchical carbon composites in the shape of a cross are successfully synthesized. The as‐prepared N and Fe‐codoped carbon material treated at 700 °C exhibits a high specific capacitance of 505.4 F g?1 at 0.1 A g?1. To the best knowledge, this is the highest supercapacitor capacitance based on fullerene electrode materials. The use of a fullerene derivative as an in‐situ doped carbon for applications in energy storage opens a new avenue for developing future synthetic strategies to extend the repertoire of electrode materials with high performance.  相似文献   
920.
Aim Long‐distance migrations of terrestrial animals, driven by needs such as food, water and escaping predators and harsh climatic conditions, are widely known phenomena. The saiga antelope (Saiga tatarica tatarica) migrates over long distances in the semi‐arid rangelands of Central Asia. Both the saiga’s range and its populations have been severely affected by socio‐political and land use changes over the last century, related to the formation and dissolution of the Soviet Union. We identified ecological drivers of saiga migration, compared four populations in terms of differences in the geographical characteristics of their ranges and the factors affecting habitat selection within the seasonal ranges. Location Kazakhstan and pre‐Caspian Russia. Methods Using 40 years of direct observations, we tested for differences between the four saiga populations’ ranges in terms of precipitation, seasonal productivity and topographical variables using discriminant analyses. We tested hypotheses concerning the drivers of migration to their seasonal ranges and assessed the impact of peak and average values and the predictability of drivers of habitat use within the seasonal ranges using logistic regressions. Results Three of the four populations migrate in a similar way, following a latitudinal gradient driven by seasonal changes in productivity, which is closely related to broad‐scale differences in precipitation. Intermediate productivity and its low interannual variability determine habitat selection within the seasonal ranges of all the populations. Main conclusions Migration of all four populations is driven by productivity and precipitation. The migrations in Kazakhstan are still intact despite major recent disruption to the populations, whereas their status in the pre‐Caspian region is unknown. All four populations are under severe threat from habitat loss, poaching, lack of protection and gaps in ecological knowledge. A better understanding of the drivers of saiga migration at multiple scales is a key step towards addressing these threats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号