首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   985篇
  免费   221篇
  国内免费   392篇
  2024年   13篇
  2023年   58篇
  2022年   41篇
  2021年   53篇
  2020年   94篇
  2019年   93篇
  2018年   85篇
  2017年   81篇
  2016年   85篇
  2015年   74篇
  2014年   58篇
  2013年   95篇
  2012年   70篇
  2011年   69篇
  2010年   48篇
  2009年   57篇
  2008年   65篇
  2007年   56篇
  2006年   53篇
  2005年   36篇
  2004年   31篇
  2003年   31篇
  2002年   36篇
  2001年   28篇
  2000年   19篇
  1999年   17篇
  1998年   21篇
  1997年   9篇
  1996年   8篇
  1995年   10篇
  1994年   10篇
  1993年   7篇
  1992年   9篇
  1991年   7篇
  1990年   12篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   4篇
  1985年   7篇
  1984年   9篇
  1983年   5篇
  1982年   6篇
  1980年   4篇
  1976年   1篇
  1975年   1篇
  1973年   3篇
  1972年   1篇
  1958年   2篇
排序方式: 共有1598条查询结果,搜索用时 713 毫秒
801.
There is a crucial need in the study of global change to understand how terrestrial ecosystems respond to the climate system.It has been demonstrated by many researches that Normalized Different Vegetation Index (NDVI)time series from remotely sensed data,which provide effective information of vegetation conditions on a large scale with highly temporal resolution,have a good relation with meteorological factors.However,few of these studies have taken the cumulative property of NDVI time series into account.In this study,NDVI difference series were proposed to replace the original NDVI time series with NDVI difference series to reappraise the relationship between NDVI and meteorological factors.As a proxy of the vegetation growing process,NDVI difference represents net primary productivity of vegetation at a certain time interval under an environment controlled by certain climatic conditions and other factors.This data replacement is helpful to eliminate the cumulative effect that exist in original NDVI time series,and thus is more appropriate to understand how climate system affects vegetation growth in a short time scale.By using the correlation analysis method,we studied the relationship between NOAA/AVHRR ten-day NDVI difference series and corresponding meteorological data from 1983 to 1999 from 11 meteorological stations located in the Xilingole steppe in Inner Mongolia.The results show that:(1)meteorological factors are found to be more significantly correlation with NDVI difference at the biomass-rising phase than that at the falling phase;(2)the relationship between NDVI difference and climate variables varies with vegetation types and vegetation communities.In a typical steppe dominated by Leymus chinensis,temperature has higher correlation with NDVI difference than precipitation does,and in a typical steppe dominated by Stipa krylovii,the correlation between temperature and NDVI difference is lower than that between precipitation and NDVI difference.In a typical steppe dominated by Stipa grandis,there is no significant difference between the two correlations.Precipitation is the key factor influencing vegetation growth in a desert steppe,and temperature has poor correlation with NDVI difference;(3)the response of NDVI difference to precipitation is fast and almost simultaneous both in a typical steppe and desert steppe,however,mean temperature exhibits a time-lag effect especially in the desert steppe and some typical steppe dominated by Stipa krylovii;(4)the relationship between NDVI difference and temperature is becoming stronger with global warming.  相似文献   
802.
Aims Extreme climate events have become more severe and frequent with global change in recent years. The Chinese temperate steppes are an important component of the Eurasian steppes and highly sensitive and vulnerable to climatic change. As a result, the occurrence of extreme climate events must have strong impacts on the temperate steppes. Therefore, understanding the spatio-temporal trends in extreme climate is important for us to assess the sensitivity and vulnerability of Chinese temperate steppes to climatic changes. This research had two specific objects to (i) specify the temporal changes in extreme climate events across the whole steppe and (ii) compare the trend differences for extreme climate events in different types of steppes—meadow steppe, typical steppe and desert steppe.  相似文献   
803.
Due to significant decreases in precipitation in northern China, knowledge of the response of seed germination and plant growth characteristics to key limiting factors is essential for vegetation restoration. We examined seed germination under different temperatures and water potentials, and we examined seedling growth under different amounts of water supply. Experiments were carried out in automatic temperature‐, humidity‐, and light‐controlled growth chambers. Under low water potentials, the final germination percentages of four herbaceous species were high, while seed germination of the shrub species Caragana microphylla was significantly inhibited. Under the different water supply amounts, seedlings of Agropyron cristatum allocated more biomass to the root and had a higher growth rate than those of Elymus dahuricus and C. microphylla. In light of these results and drier environmental conditions (annual mean precipitation is 366 mm, which falling mainly between June and August), potential selections for revegetation of different landscapes include the following: A. cristatum for shifting sand dunes, the establishment of the pioneer species Agriophyllum squarrosum, C. microphylla for semifixed sand dunes, E. dahuricus for fixed sand dunes, and Melilotus suaveolens and Medicago sativa for cultivation.  相似文献   
804.
Patterns of late Palaeogene mammalian evolution appear to be very different between Eurasia and North America. Around the Eocene–Oligocene (EO) transition global temperatures in the Northern Hemisphere plummet: following this, European mammal faunas undergo a profound extinction event (the Grande Coupure), while in North America they appear to pass through this temperature event unscathed. Here, we investigate the role of surface uplift to environmental change and mammalian evolution through the Palaeogene (66–23 Ma). Palaeogene regional surface uplift in North America caused large-scale reorganization of precipitation patterns, particularly in the continental interior, in accord with our combined stable isotope and ecometric data. Changes in mammalian faunas reflect that these were dry and high-elevation palaeoenvironments. The scenario of Middle to Late Eocene (50–37 Ma) surface uplift, together with decreasing precipitation in higher-altitude regions of western North America, explains the enigma of the apparent lack of the large-scale mammal faunal change around the EO transition that characterized western Europe. We suggest that North American mammalian faunas were already pre-adapted to cooler and drier conditions preceding the EO boundary, resulting from the effects of a protracted history of surface uplift.  相似文献   
805.
不同林龄木荷-青冈栎混交林幼林碳储量   总被引:1,自引:0,他引:1  
以我国北亚热带地区由灌木林人工改造而来的7、11年生木荷(Schima superba Gardn.et Champ.)-青冈栎(Cyclobalanpsis glauca(Thunb.)Oerst.)混交林为对象,研究幼林期林龄对林分生态系统碳储量的影响。结果表明:1)各林分植被、土壤碳储量均表现为灌木林7年生木荷-青冈栎林11年生木荷-青冈栎林,7年生和11年生木荷-青冈栎林植被碳储量分别比灌木林增加了5.49和23.64 t·hm-2,差异达到显著水平(P0.05),11年生木荷-青冈栎林的植被碳储量比7年生多积累18.15 t·hm-2。7年生和11年生木荷-青冈栎林土壤有机碳储量分别比灌木林增加了12.56和30.99 t·hm-2,差异均达到显著水平;11年生木荷-青冈栎林土壤有机碳储量比7年生多18.43 t·hm-2,且各土层碳储量均有显著增加;2)3种林分生态系统碳储量分别为54.11、72.16和108.74 t·hm-2,相比灌木林,7年生和11年生木荷-青冈栎林碳储量年均增长量分别为2.58和4.97 t·hm-2·a-1;灌木林改造为常绿阔叶人工林,林分碳储量在幼林期已有显著增加,随着林龄增长,人工林碳储量的积累还有待进一步研究。  相似文献   
806.
807.
Climate change is intensifying the hydrologic cycle and is expected to increase the frequency of extreme wet and dry years. Beyond precipitation amount, extreme wet and dry years may differ in other ways, such as the number of precipitation events, event size, and the time between events. We assessed 1614 long‐term (100 year) precipitation records from around the world to identify key attributes of precipitation regimes, besides amount, that distinguish statistically extreme wet from extreme dry years. In general, in regions where mean annual precipitation (MAP) exceeded 1000 mm, precipitation amounts in extreme wet and dry years differed from average years by ~40% and 30%, respectively. The magnitude of these deviations increased to >60% for dry years and to >150% for wet years in arid regions (MAP<500 mm). Extreme wet years were primarily distinguished from average and extreme dry years by the presence of multiple extreme (large) daily precipitation events (events >99th percentile of all events); these occurred twice as often in extreme wet years compared to average years. In contrast, these large precipitation events were rare in extreme dry years. Less important for distinguishing extreme wet from dry years were mean event size and frequency, or the number of dry days between events. However, extreme dry years were distinguished from average years by an increase in the number of dry days between events. These precipitation regime attributes consistently differed between extreme wet and dry years across 12 major terrestrial ecoregions from around the world, from deserts to the tropics. Thus, we recommend that climate change experiments and model simulations incorporate these differences in key precipitation regime attributes, as well as amount into treatments. This will allow experiments to more realistically simulate extreme precipitation years and more accurately assess the ecological consequences.  相似文献   
808.
Although precipitation interannual variability is projected to increase due to climate change, effects of changes in precipitation variance have received considerable less attention than effects of changes in the mean state of climate. Interannual precipitation variability effects on functional diversity and its consequences for ecosystem functioning are assessed here using a 6‐year rainfall manipulation experiment. Five precipitation treatments were switched annually resulting in increased levels of precipitation variability while maintaining average precipitation constant. Functional diversity showed a positive response to increased variability due to increased evenness. Dominant grasses decreased and rare plant functional types increased in abundance because grasses showed a hump‐shaped response to precipitation with a maximum around modal precipitation, whereas rare species peaked at high precipitation values. Increased functional diversity ameliorated negative effects of precipitation variability on primary production. Rare species buffered the effect of precipitation variability on the variability in total productivity because their variance decreases with increasing precipitation variance.  相似文献   
809.
810.
This article presents a novel method for immobilization of active ingredients. The method is based on CO(2) aided active ingredient co-precipitation with glycinin, a biodegradable protein matrix from edible soybean protein. Glycinin precipitates abundantly under isoelectric conditions and serves as the matrix within which the active substance is trapped during the precipitation process. The enzyme lipase from Candida rugosa was successfully co-precipitated into the protein pellet to prove the principle. It was shown that the lipase within the co-precipitate retained lipase and esterase activity under different pH conditions. In some cases the activity was even higher than the activity of crude lipase, possibly due to the protective role of the matrix protein. Due to the retained lipase activity and food-grade quality of the binary precipitate, it has potential of being used in the food or pharmaceutical industry. Additional quality of the binary precipitate is the potentially significantly reduced downstream processing due to the fact that no organic solvents or precipitants were used in the precipitation process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号