首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1157篇
  免费   74篇
  国内免费   21篇
  2023年   8篇
  2022年   23篇
  2021年   21篇
  2020年   25篇
  2019年   26篇
  2018年   21篇
  2017年   24篇
  2016年   27篇
  2015年   26篇
  2014年   31篇
  2013年   84篇
  2012年   38篇
  2011年   38篇
  2010年   26篇
  2009年   42篇
  2008年   57篇
  2007年   51篇
  2006年   37篇
  2005年   49篇
  2004年   44篇
  2003年   54篇
  2002年   37篇
  2001年   29篇
  2000年   31篇
  1999年   29篇
  1998年   30篇
  1997年   17篇
  1996年   25篇
  1995年   12篇
  1994年   23篇
  1993年   18篇
  1992年   24篇
  1991年   24篇
  1990年   13篇
  1989年   14篇
  1988年   16篇
  1987年   20篇
  1986年   13篇
  1985年   12篇
  1984年   26篇
  1983年   20篇
  1982年   20篇
  1981年   16篇
  1980年   9篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
排序方式: 共有1252条查询结果,搜索用时 812 毫秒
51.
Promoter methylation and progressive transgene inactivation inArabidopsis   总被引:1,自引:0,他引:1  
Agrobacterium-transformedArabidopsis plants were generated and the stability of their T-DNA-encoded resistance to kanamycin was examined. Of seven families, each homozygous for a single insertion event, two showed progressive inactivation of resistance over four generations of inbreeding. Loss of resistance was associated with methylation of anSst II site in thenos promoter of the kanamycin resistance gene. Treatment of plant roots from inactive lines with the demethylating agent 5-azacytidine restored the ability of such lines to form callus on kanamycin-containing media. These observations are consistent with the view that methylation is a factor in the progressive inactivation of transgenes inArabidopsis.  相似文献   
52.
We studied the effects of low temperature (20–37°C), monensin, chloroquine, and microtubule drugs on the cellular distribution and activity of galactosyl (Gal) receptors in isolated rat hepatocytes. After equilibration at 37°C, hepatocytes were incubated at 37°C, 31°C, 25°C, or 20°C or treated with or without inhibitors at 37°C in the absence of ligand. The cells were then assayed at 4°C for 125I-asialo-orosomucoid binding, to measure receptor activity, or 125I-anti-Gal receptor IgG binding, to measure receptor protein. Surface or total (surface and intracellular) Gal receptor activity and protein were measured on intact or digitonin-permeabilized cells, respectively. These inhibitors fell into two categories. Type I inhibitors (sub-37°C temperatures or colchicine) induced receptor redistribution but not inactivation. Treated cells lost up to 40% of surface Gal receptor activity and protein. Lost surface receptors were recovered intracellularly with no loss of receptor activity. Type II inhibitors (monensin or chloroquine) induced receptor inactivation but not redistribution. Treated cells lost 50–65% of their surface Gal receptor activity but only ? 15% of their surface receptor protein. These cells lost up to 60% of total cellular Gal receptor activity with no loss of total receptor protein. Of the total inactive Gal receptors, up to 50% and75%, respectively, were present intracellularly in monensin-and chloroquine-treated cells. Loss of ligand binding to permeable treated cells was not due to changes in receptor affinity. A third category, Type III inhibitors (metabolic energy poisons that deplete ATP) induce both Gal receptor redistribution and inactivation (Biochemistry 27:2061, 1988). We conclude that only one of the two previously characterized subpopulations of Gal receptors on hepatocytes, termed State 2 receptors (J Biol Chem 265:629, 1990), recycles constitutively. The activity and distribution of State 2 but not State 1 Gal receptors are differentially affected by these specific drugs or treatments.  相似文献   
53.
Alpha-bag cell peptide [α-BCP (Ala-Pro-Arg-Leu-Arg-Phe-Tyr-Ser-Leu)] is a neurotransmitter that mediates bag cell-induced inhibition of left-upper-quadrant (LUQ) neurons L2, L3, L4, and L6 in the abdominal ganglion of Aplysia. Our recent biochemical studies have shown that α-BCP[1–9] is cleaved into α-BCP[1–2], [3–9], [1–5], [6–9], and [7–9] by a combination of three distinct peptidase activities located within the extracellular spaces of the CNS: A diaminopeptidase-IV (DAP-IV)-like enzyme cleaves α-BCP[1–9] at the 2–3 peptide bond; a neutral metalloendopeptidase (NEP)-like enzyme cleaves either α-BCP[1–9] or α-BCP[3–9] at the 5–6 bond; an aminopeptidase M-II (APM-II)-like enzyme cleaves α-BCP[6–9] at the 6–7 bond, but cleaves neither α-BCP[1–9], nor the other ganglionic peptidase products. To further understand the manner in which α-BCP is inactivated after release, that is loses its electro-physiological activity, we studied its structure-activity relationship by recording intracellularly from LUQ neurons in isolated abdominal ganglia that were arterially perfused with peptides dissolved in artificial sea water. The effects of α-BCP[1–9] and 15 of its fragments ([1–8], [1–7], [1–6], [1–5], [2–9], [3–9], [3–8], [6–9], [7–9], [8–9], [6–7], [6–8], [1–2], Phe, Tyr) indicated that the sequence Phe6-Tyr7 was both necessary and sufficient to produce LUQ inhibitory activity. The combined results of our electrophysiological and biochemical studies strongly suggest that α-BCP[1–9] is inactivated by the serial actions of the NEP-like and APM-II-like peptidases; that is, the NEP-like enzyme yields an electro-physiologically active product, α-BCP[6–9], that is cleaved by the APM-II-like enzyme to yield inactive α-BCP[7–9]. Furthermore, because α-BCP[6–9] is more active than α-BCP[1–9], cleavage by the NEP-like enzyme potentiates α-BCP's activity. © 1992 John Wiley & Sons, Inc.  相似文献   
54.
55.
Using BrdU-labeling and acridine orange staining, the behavior of X-chromosome replication was studied in 28 XXX and 19 XXY digynous mouse triploids. In some of these the paternal and maternal X chromosome could by cytologically distinguished. Such embryos were obtained by mating chromosomally normal females with males carrying Cattanach's X chromosome which contains an autosomal insertion that substantially increases the length of this chromosome. In the XXX triploids there were two distinct cell lines, one with two late-replicating X chromosomes, and the other with only one late-replicating X. The XXY triploids were also composed of two cell populations, one with a single late-replicating X and the other with no late replicating X chromosome. Assuming that the late-replicating X is genetically inactive, in both XXX and XXY triploids, cells from the embryonic region tended to have only one active X chromosome, whereas those from the extra-embryonic membranes tended to have two active X chromosomes. The single active X chromosome was either paternal or maternal in origin, but two active X chromosomes were overwhelmingly maternal in origin, suggesting paternal X-inactivation in extra-embryonic tissues.  相似文献   
56.
Summary Choline transport in erythrocytes is irreversibly inhibited by N-ethylmaleimide. The hypothesis that the carrier alternates between outwardfacing and inward-facing forms and that only the latter reacts with the inhibitor (Martin, K. (1971)J. Physiol. (London) 213:647–667; Edwards, P.A. (1973)Biochim. Biophys. Acta 311:123–140) is here subjected to a quantitative test. In this test the effects of a series of substrate analogs upon rates of inactivation and rates of choline exit are compared. By hypothesis the effect of an analog in the external solution on the inactivation rate depends only on how it affects the proportion of the inward-facing carrier. Since14C-choline efflux is necessarily proportional to the concentration of free carrier in the inward-facing form, the analogs should have related effects on the two rates. In every case the observed effects were identical, whether the analogs accelerated transport or inhibited it. Analysis of the results demonstrates that (1) the transport mechanism depends on the operation of a mobile element; (2) distinguishable inward-facing and outward-facing conformations of the free carrier, carrier-substrate complex, and carrier-inhibitor complex exist, and only the inwardfacing forms react at a significant rate with N-ethylmaleimide; (3) carrier mechanisms involving a single form of free carrier or a single form of carriersubstrate complex are ruled out; and (4) dissociation of the carrier-substrate complex is a rapid step with all substrate analogs.  相似文献   
57.
Tyrosine hydroxylase was purified from bovine corpus striatum. The native enzyme had a half-life of 15 +/- 3 min at 50 degrees C. Phosphorylation of tyrosine hydroxylase with protein kinase purified from both corpus striatum and heart activated the enzyme, but activity was rapidly lost with additional preincubation of the enzyme at 30 degrees C. Thermal denaturation studies indicated that phosphorylated tyrosine hydroxylase had a half-life of 5 +/- 2 min at 50 degrees C  相似文献   
58.
Catabolite inactivation of fructose-1,6-bisphosphatase, isocitrate lyase, phosphoenolpruvate carboxykinase and malate dehydrogenase in intact cells could be prevented by phenylmethylsulfonyl fluoride added 40 min prior to the addition of glucose. Protein synthesis, fermentative and respiratory activity and catabolite repression were not affected. Elimination of catabolite inactivation by the addition of PMSF revealed that catabolite repression started at different times for different enzyme.Abbreviation PMSF phenylmethylsulfonyl fluoride  相似文献   
59.
The molecular mechanisms of protein inactivation, i.e. aggregation, thiol-disulphide exchange, alteration of the primary structure, dissociation of cofactor molecules from the active centre, dissociation of the oligomeric proteins into subunits and conformational changes have been analysed. All these mechanisms are closely interrelated during inactivation of proteins. However, in many cases, the conformational changes accompany and trigger other inactivation processes. Reactivation of irreversibly inactivated proteins is·discussed. Reactivation can be successful when inactivation has been caused by aggregation, modification of SH-groups (or S-S bonds) or as a consequence of irreversible conformational changes.  相似文献   
60.
A single formamidase, which is different from the formamidases found in other tissues, occurs in the brains of mice. This enzyme is here called formamidase-5 and the gene symbol is designated For-5. Two alleles are recognized on the basis of their differential heat sensitivity: For-5 b is relatively heat stable and is present in strain C57BL/6J, while For-5 d is relatively heat sensitive and is present in strain DBA/2J. The heat sensitivity of formamidase-5 in 44 other inbred strains and substrains was tested and found to resemble that of C57BL/6J or DBA/2J. Thirty-six recombinant inbred strains derived from progenitors that differed at For-5 were studied to test for single-gene inheritance and linkage with other loci. Complete concordance was found with the esterase-10 locus (Es-10), indicating close linkage. The 99% upper confidence limit of the distance between For-5 and Es-10 is 3.7 centimorgans (cM). Es-10 is located on chromosome 14 about 19 cM from the centromere. An independent demonstration of linkage of For-5 with Es-10 and another chromosome 14 marker, hairless (hr), is provided by the finding that the HRS/J strain, which has been sibmated for 60 generations with forced heterozygosity at the hr locus, is cosegregating at For-5 and Es-10. A survey of 32 inbred strains and substrains revealed that the For-5 d allele is associated with the Es-10 b allele, and that the For-5 b allele is associated with Es-10 a and Es-10 c. Formamidase-5 segregates as expected in the F2 generation of crosses between strains bearing For-5 b and For-5 d alleles. It is possible that this unique formamidase of the brain is involved in the metabolism of a neurotransmitter substance.This research was sponsored in part by the Department of Energy under contract with the Union Carbide Corporation and in part by NIH Research Grant GM-18684 from the National Institute of General Medical Sciences. J. C. F. is a predoctoral Fellow supported by Grant CA 09104 from the National Cancer Institute. The Biology Division of Oak Ridge National Laboratory and the Jackson Laboratory are fully accredited by the American Association for Accreditation of Laboratory Animal Care.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号