首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2362篇
  免费   226篇
  国内免费   28篇
  2024年   2篇
  2023年   24篇
  2022年   19篇
  2021年   41篇
  2020年   62篇
  2019年   62篇
  2018年   68篇
  2017年   91篇
  2016年   102篇
  2015年   118篇
  2014年   133篇
  2013年   107篇
  2012年   90篇
  2011年   120篇
  2010年   135篇
  2009年   153篇
  2008年   166篇
  2007年   154篇
  2006年   99篇
  2005年   99篇
  2004年   95篇
  2003年   97篇
  2002年   67篇
  2001年   50篇
  2000年   51篇
  1999年   64篇
  1998年   46篇
  1997年   46篇
  1996年   48篇
  1995年   29篇
  1994年   36篇
  1993年   29篇
  1992年   25篇
  1991年   14篇
  1990年   14篇
  1989年   12篇
  1988年   14篇
  1987年   9篇
  1986年   5篇
  1985年   9篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1977年   1篇
排序方式: 共有2616条查询结果,搜索用时 31 毫秒
71.
Carrion-feeding flies use odours emanating from the decomposing corpse as cues for oviposition and are described as generalists because the larvae feed on the corpses of diverse species. Whereas several features of the corpse may influence the oviposition choices of these flies, it is not known whether there is a preference for a particular species of corpse. We provided carrion flies with ovipositional (and feeding) choices in a field experiment, in which various odour sources were presented simultaneously. We found novel evidence of broadly consistent choices of carrion by flies from four families. Traps baited with decaying fish flesh captured the greatest number of individuals, whereas traps baited with decaying pig liver typically attracted the least. We also asked whether individuals captured in the various baits vary in antennal size, perhaps reflecting different capacities for odour detection. There was a trend for individuals of Lucilia sericata Meigen (Diptera: Calliphoridae) and the platystomatid collected from the traps baited with pig liver to have significantly larger antennae, whereas individuals of Muscina stabulans (Fallen) (Diptera: Muscidae) captured in traps baited with marine fish flesh had relatively longer antennae for their body size. Our data reveal a more nuanced pattern of oviposition behaviour in these generalist carrion flies, which may reflect differences in their preference of carrion with different nutrients, and in their capacity to detect particular odours.  相似文献   
72.
Sexually transmitted infections (STIs) are predicted to play an important role in the evolution of host mating strategies, and vice versa, yet our understanding of host-STI coevolution is limited. Previous theoretical work has shown mate choice can evolve to prevent runaway STI virulence evolution in chronic, sterilizing infections. Here, I generalize this theory to examine how a broader range of life-history traits influence coevolution; specifically, how host preferences for healthy mates and STI virulence coevolve when infections are acute and can cause mortality or sterility, and hosts do not form long-term sexual partnerships. I show that mate choice reduces both mortality and sterility virulence, with qualitatively different outcomes depending on the mode of virulence, costs associated with mate choice, recovery rates, and host lifespan. For example, fluctuating selection—a key finding in previous work—is most likely when hosts have moderate lifespans, STIs cause sterility and long infections, and costs of mate choice are low. The results reveal new insights into the coevolution of mate choice and STI virulence as different life-history traits vary, providing increased support for parasite-mediated sexual selection as a potential driver of host mate choice, and mate choice as a constraint on the evolution of virulence.  相似文献   
73.
Forced copulation is an extreme form of sexual aggression that can affect the evolution of sex-specific anatomy, morphology, and behavior. To characterize mechanistic and evolutionary aspects of forced copulation, we artificially selected male fruit flies based on their ability to succeed in the naturally prevalent behavior of forced matings with newly eclosed (teneral) females. The low and high forced copulation lineages showed rapid divergence, with the high lineages ultimately showing twice the rates of forced copulation as the low lineages. While males from the high lineages spent more time aggressively pursuing and mounting teneral females, their behavior toward non-teneral and heterospecific females was similar to that of males from the low lineages. Males from the low and high lineages also showed similar levels of male-male aggression. This suggests little or no genetic correlations between sexual aggression and non-aggressive pursuit of females, and between male aggression toward females and males. Surprisingly however, males from the high lineages had twice as high mating success than males from the low lineages when allowed to compete for consensual mating with mature females. In further experiments, we found no evidence for trade-offs associated with high forced mating rates: males from the high lineages did not have lower longevity than males from the low lineages when housed with females, and four generations of relaxed selection did not lead to convergence in forced mating rates. Our data indicate complex interactions among forced copulation success and consensual mating behavior, which we hope to clarify in future genomic work.  相似文献   
74.
Courtship is an elaborate behavior that conveys information about the identity of animal species and suitability of individual males as mates. In Drosophila, there is extensive evidence that females are capable of evaluating and comparing male courtships, and accepting or rejecting males as mates. These relatively simple responses minimize random sexual encounters involving subpar conspecific males and heterospecific males, and over generations can potentially select novel physical and behavioral traits. Despite its evolutionary and behavioral significance, little is still known about the genes involved in mating choice and how choices for novel males and females arise during evolution. Drosophila simulans and Drosophila sechellia are two recently diverged species of Drosophila in which females have a preference for conspecific males. Here we analyzed a total of 1748 F2 hybrid females between these two species and found a small number of dominant genes controlling the preference for D. simulans males. We also mapped two redundant X‐linked loci of mating choice, Macho‐XA and Macho‐XB, and show that neither one is required for female attractiveness. Together, our results reveal part of the genetic architecture that allows D. simulans females to recognize, mate, and successfully generate progenies with D. simulans males.  相似文献   
75.
76.
77.
Sexual selection theory suggests that choice for partners carrying dissimilar genes at the major histocompatibility complex (MHC) may play a role in maintaining genetic variation in animal populations by limiting inbreeding or improving the immunity of future offspring. However, it is often difficult to establish whether the observed MHC dissimilarity among mates drives mate choice or represents a by‐product of inbreeding avoidance based on MHC‐independent cues. Here, we used 454‐sequencing and a 10‐year study of wild grey mouse lemurs (Microcebus murinus), small, solitary primates from western Madagascar, to compare the relative importance on the mate choice of two MHC class II genes, DRB and DQB, that are equally variable but display contrasting patterns of selection at the molecular level, with DRB under stronger diversifying selection. We further assessed the effect of the genetic relatedness and of the spatial distance among candidate mates on the detection of MHC‐dependent mate choice. Our results reveal inbreeding avoidance, along with disassortative mate choice at DRB, but not at DQB. DRB‐disassortative mate choice remains detectable after excluding all related dyads (characterized by a relatedness coefficient r > 0), but varies slightly with the spatial distance among candidate mates. These findings suggest that the observed deviations from random mate choice at MHC are driven by functionally important MHC genes (like DRB) rather than passively resulting from inbreeding avoidance and further emphasize the need for taking into account the spatial and genetic structure of the population in correlative tests of MHC‐dependent mate choice.  相似文献   
78.
Sex allocation theory predicts the optimal allocation to male and female reproduction in sexual organisms. In animals, most work on sex allocation has focused on species with separate sexes and our understanding of simultaneous hermaphrodites is patchier. Recent theory predicts that sex allocation in simultaneous hermaphrodites should strongly be affected by post-copulatory sexual selection, while the role of pre-copulatory sexual selection is much less clear. Here, we review sex allocation and sexual selection theory for simultaneous hermaphrodites, and identify several strong and potentially unwarranted assumptions. We then present a model that treats allocation to sexually selected traits as components of sex allocation and explore patterns of allocation when some of these assumptions are relaxed. For example, when investment into a male sexually selected trait leads to skews in sperm competition, causing local sperm competition, this is expected to lead to a reduced allocation to sperm production. We conclude that understanding the evolution of sex allocation in simultaneous hermaphrodites requires detailed knowledge of the different sexual selection processes and their relative importance. However, little is currently known quantitatively about sexual selection in simultaneous hermaphrodites, about what the underlying traits are, and about what drives and constrains their evolution. Future work should therefore aim at quantifying sexual selection and identifying the underlying traits along the pre- to post-copulatory axis.  相似文献   
79.
To date, mate choice studies have mostly focused on establishing which mates are chosen or how the choices are performed. Here, we combined these two approaches by empirically testing how latency to mate is affected by various search costs, variation in mate quality and female quality in the sand goby (Pomatoschistus minutus). Our results show that females adjust their mating behaviour according to the costs and benefits of the choice situation. Specifically, they mated sooner when access to males was delayed and when the presence of other females presented a mate sampling cost. We also found a positive link between size variation among potential mating partners and spawning delay in some (but not all) experimental conditions. By contrast, we did not find the number of available males or the females'' own body size (‘quality’) to affect mating latency. Finally, female mating behaviour varied significantly between years. These findings are notable for demonstrating that (i) mate sampling time is particularly sensitive to costs and, to a lesser degree, to variation among mate candidates, (ii) females'' mating behaviour is sensitive to qualitative rather than to quantitative variation in their environment, and (iii) a snapshot view may describe mate sampling behaviour unreliably.  相似文献   
80.
Dispersal moves individuals from patches where their immediate ancestors were successful to sites where their genotypes are untested. As a result, dispersal generally reduces fitness, a phenomenon known as “migration load.” The strength of migration load depends on the pattern of dispersal and can be dramatically lessened or reversed when individuals move preferentially toward patches conferring higher fitness. Evolutionary ecologists have long modeled nonrandom dispersal, focusing primarily on its effects on population density over space, the maintenance of genetic variation, and reproductive isolation. Here, we build upon previous work by calculating how the extent of local adaptation and the migration load are affected when individuals differ in their dispersal rate in a genotype‐dependent manner that alters their match to their environment. Examining a one‐locus, two‐patch model, we show that local adaptation occurs through a combination of natural selection and adaptive dispersal. For a substantial portion of parameter space, adaptive dispersal can be the predominant force generating local adaptation. Furthermore, genetic load may be largely averted with adaptive dispersal whenever individuals move before selective deaths occur. Thus, to understand the mechanisms driving local adaptation, biologists must account for the extent and nature of nonrandom, genotype‐dependent dispersal, and the potential for adaptation via spatial sorting of genotypes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号