首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   547篇
  免费   34篇
  国内免费   98篇
  2023年   19篇
  2022年   22篇
  2021年   35篇
  2020年   32篇
  2019年   32篇
  2018年   26篇
  2017年   26篇
  2016年   19篇
  2015年   20篇
  2014年   33篇
  2013年   35篇
  2012年   20篇
  2011年   26篇
  2010年   26篇
  2009年   24篇
  2008年   23篇
  2007年   24篇
  2006年   28篇
  2005年   23篇
  2004年   23篇
  2003年   23篇
  2002年   18篇
  2001年   12篇
  2000年   12篇
  1999年   9篇
  1998年   8篇
  1997年   8篇
  1996年   4篇
  1995年   12篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   8篇
  1990年   6篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   7篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   7篇
  1980年   3篇
排序方式: 共有679条查询结果,搜索用时 671 毫秒
21.
22.
ObjectiveThe aim of this study is to assess the effects on procedural, 30-day, and 1‑year all-cause mortality by a newly introduced quality improvement strategy in patients after transcatheter aortic valve replacement (TAVR).MethodsIn October 2015, a coherent set of quality improving interventions with respect to patient geriatric screening, general diagnostic examination and safety of the procedure was implemented at a single centre in the Netherlands. Patients undergoing TAVR in 2013–2018 were included for retrospective analysis. Mortality was assessed in the pre-quality improvement strategy cohort (January 2013 to October 2015; cohort A) and in the post-quality improvement strategy cohort (November 2015 to December 2018; cohort B). Logistic regression analysis was used to estimate the influence of patient and procedural characteristics on the results of the quality improvement strategy in terms of procedural, 30-day, and 1‑year all-cause mortality.ResultsIn total, 806 patients were analysed with 274 patients in cohort A and 532 patients in cohort B. After introduction of the quality improvement strategy, procedural (4.4% to 1.3%, p < 0.01), 30-day (8.4% to 2.7%, p < 0.01) and 1‑year (16.4% to 8.5%, p < 0.01) all-cause mortality significantly decreased. Multivariate regression analysis showed that the quality improvement strategy also significantly reduced 30-day (odds ratio [OR] 0.19, 95% confidence interval [CI] 0.09–0.42) and 1‑year (OR 0.38, 95% CI 0.24–0.61) all-cause mortality if corrected for patient characteristics.ConclusionStructural meetings on evaluation of outcomes highlight potential areas for improvement and subsequent outcome-based quality improvement initiatives can result in lower procedural, 30-day, and 1‑year all-cause mortality.Electronic supplementary materialThe online version of this article (10.1007/s12471-020-01526-7) contains supplementary material, which is available to authorized users.  相似文献   
23.
稻瘟病是水稻的主要病害之一,改良水稻稻瘟病抗性对水稻生产、推广具有重要意义。本研究以携带广谱抗稻瘟病基因Pi9材料9311-Pi9为供体,水稻优良恢复系M630为受体,将杂交、回交与分子标记辅助选择和背景筛选相结合,获得改良恢复系M630-Pi9。主要农艺性状和稻米品质分析显示改良后的M630-Pi9及其杂交组合徽两优630-Pi9与M630和徽两优630相比无明显差异。进一步利用安徽省优势混合生理小种进行苗期稻瘟病抗性鉴定,结果表明,改良后的M630-Pi9相对于M630抗性明显增强;稻瘟病抗性自然病圃鉴定结果发现改良后的恢复系及其杂交组合抗性明显增加。为了更好地了解稻瘟病抗性基因对植株发育的代谢机制,对M630-Pi9和M630受稻瘟病病原菌侵染后的植株进行代谢组分析,结果显示与M630相比,M630-Pi9中有212种代谢物合成受到调控,其中155种含量降低,57种含量增加;与细胞壁有关的物质含量明显增加,对生物体具有毒害和免疫作用的生物碱类代谢物含量显著降低,与生物胁迫相关的黄酮类物质受到不同程度的调控。这些数据表明稻瘟病抗性基因Pi9可能通过调控植物体中代谢物质的变化进而抵御病原体的侵害。创制的新恢复系稻瘟病抗性显著提高,对稻瘟病抗性机制研究提供依据,为水稻抗病、高产育种提供新的种质。  相似文献   
24.
The sequencing of large and complex genomes of crop species, facilitated by new sequencing technologies and bioinformatic approaches, has provided new opportunities for crop improvement. Current challenges include understanding how genetic variation translates into phenotypic performance in the field.  相似文献   
25.
通过测定钢渣的化学组成分析得出其组分特征,进一步通过在有降解碱剂HPMA参与的重(轻)度盐碱土壤及钢渣中栽种不同植物种子(玉米、茄子、水稻和长春花),观察植物的长势,探究钢渣是否可以用于土壤改良。结果发现钢渣的化学成分与土壤基本相同,但部分成分如CaO、Fe2O3、MgO、MnO2等显著高于土壤,而另外一些组分TiO2、K2O、Na2O、P2O5在钢渣中未检测出来。对比重(轻)度盐碱土壤,钢渣与HPMA共同作用时,玉米、茄子、水稻和长春花等发芽率及生长速率明显提高;与常用的蛭石、珍珠岩改良剂对比实验中,不同植物存在类似的发芽率和生长速率,说明钢渣可以作为温室土壤结构改良剂;与钢渣产地丰富的树皮土资源配比形成复方改良剂,发现其具有类似花土(泥炭土)的生长速率和发芽率。初步研究表明,钢渣可以用于盐碱地改良,而且对于设施农业的土壤结构改良具有功效,与当地树皮土资源结合,具有形成复方土壤改良剂的潜力。  相似文献   
26.
Chinese hamster ovary (CHO) cells produce a large share of today's biopharmaceuticals. Still, the generation of satisfactory producer cell lines is a tedious undertaking. Recently, it was found that CHO cells, when exposed to new environmental conditions, modify their epigenome, suggesting that cells adapt their gene expression pattern to handle new challenges. The major aim of the present study was to employ artificially induced, random changes in the DNA-methylation pattern of CHO cells to diversify cell populations and consequently increase the finding of cell lines with improved cellular characteristics. To achieve this, DNA methyltransferases and/or the ten-eleven translocation enzymes were downregulated by RNA interference over a time span of ∼16 days. Methylation analysis of the resulting cell pools revealed that the knockdown of DNA methyltransferases was highly effective in randomly demethylating the genome. The same approach, when applied to stable CHO producer cells resulted in (a) an increased productivity diversity in the cell population, and (b) a higher number of outliers within the population, which resulted in higher specific productivity and titer in the sorted cells. These findings suggest that epigenetics play a previously underestimated, but actually important role in defining the overall cellular behavior of production clones.  相似文献   
27.
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing, derived from prokaryotic immunity system, is rapidly emerging as an alternative platform for introducing targeted alterations in genomes. The CRISPR-based tools have been deployed for several other applications including gene expression studies, detection of mutation patterns in genomes, epigenetic regulation, chromatin imaging, etc. Unlike the traditional genetic engineering approaches, it is simple, cost-effective, and highly specific in inducing genetic variations. Despite its popularity, the technology has limitations such as off-targets, low mutagenesis efficiency, and its dependency on in-vitro regeneration protocols for the recovery of stable plant lines. Several other issues such as persisted CRISPR activity in subsequent generations, the potential for transferring to its wild type population, the risk of reversion of edited version to its original phenotype particularly in cross-pollinated plant species when released into the environment and the scarcity of validated targets have been overlooked. This article briefly highlights these undermined aspects, which may challenge the wider applications of this platform for improving crop genetics.  相似文献   
28.
Xinyou Yin 《Annals of botany》2013,112(3):465-475

Background

Process-based ecophysiological crop models are pivotal in assessing responses of crop productivity and designing strategies of adaptation to climate change. Most existing crop models generally over-estimate the effect of elevated atmospheric [CO2], despite decades of experimental research on crop growth response to [CO2].

Analysis

A review of the literature indicates that the quantitative relationships for a number of traits, once expressed as a function of internal plant nitrogen status, are altered little by the elevated [CO2]. A model incorporating these nitrogen-based functional relationships and mechanisms simulated photosynthetic acclimation to elevated [CO2], thereby reducing the chance of over-estimating crop response to [CO2]. Robust crop models to have small parameterization requirements and yet generate phenotypic plasticity under changing environmental conditions need to capture the carbon–nitrogen interactions during crop growth.

Conclusions

The performance of the improved models depends little on the type of the experimental facilities used to obtain data for parameterization, and allows accurate projections of the impact of elevated [CO2] and other climatic variables on crop productivity.  相似文献   
29.
Despite their production potential and ability to survive on marginal resources in extreme conditions, dromedaries have not been exploited as an important food source. Camels have not been specifically selected for milk production, and genetic improvement has been negligible. High individual variation in milk production both within the population and within breeds provides a good base for selection and genetic progress. In this paper, we discuss the possibilities and constraints of selective breeding for milk production in camels, and include a summary of the use of embryo transfer at the world's first camel dairy farm. Embryo transfer is an integral part of the breeding strategy at the camel dairy farm because it increases selection intensity and decreases the generation interval. Using high milk-producing camels as donors and low producing camels as recipients, 146 embryos were recovered (6.1 ± 1.0 embryos/donor; range: 0–18). Embryos were transferred non-surgically into 111 recipients (83 single and 28 twin embryo transfers). Pregnancy rate at 21 days and 5 months was 55% (61/111) and 45% (50/111), respectively. Finally, a total of 46 recipients delivered a live calf. These results document the utility of embryo transfer using high milk producing dromedaries as donors.  相似文献   
30.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号