首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   10篇
  国内免费   4篇
  2023年   4篇
  2022年   3篇
  2021年   1篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   10篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   6篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
排序方式: 共有104条查询结果,搜索用时 29 毫秒
61.
NF‐κB/p65 is retained in the cytoplasm until it is activated in response to stress. Nuclear import of p65 is regulated by importin α in a nuclear localization signal (NLS)‐dependent manner. However, the role of importin β family members in the nuclear translocation of p65 is largely unclear. In this study, using high‐content siRNA screening, we identified three of 17 importin β family members that are involved in the nuclear import of p65. Our data showed that knockdown of KPNB1, XPO7 and IPO8 reduced the amount of nuclear p65 following tumor necrosis factor‐α (TNF‐α) stimulation, resulting in lower NF‐κB activity. KPNB1 was the major importin β receptor for p65 import, and this import was dependent on the NLS of p65. However, NLS‐mutated p65 still entered the nucleus and bound to XPO7 and IPO8. Interestingly, among the six members of the importin α family, KPNA2 was most important for p65 import. Taken together, our results show that the import of p65 mainly relies on the canonical KPNA2/KPNB1 pathway; however, p65 is also imported by an alternative pathway that is independent of its NLS. Redundant importin receptors are likely to maintain the important function of p65 according to need .   相似文献   
62.
63.
Nuclear pore complexes (NPCs) control the traffic between cell nucleus and cytoplasm. While facilitating translocation of nuclear transport receptors (NTRs) and NTR·cargo complexes, they suppress passive passage of macromolecules ?30 kDa. Previously, we reconstituted the NPC barrier as hydrogels comprising S. cerevisiae FG domains. We now studied FG domains from 10 Xenopus nucleoporins and found that all of them form hydrogels. Related domains with low FG motif density also substantially contribute to the NPC's hydrogel mass. We characterized all these hydrogels and observed the strictest sieving effect for the Nup98‐derived hydrogel. It fully blocks entry of GFP‐sized inert objects, permits facilitated entry of the small NTR NTF2, but arrests importin β‐type NTRs at its surface. O‐GlcNAc modification of the Nup98 FG domain prevented this arrest and allowed also large NTR·cargo complexes to enter. Solid‐state NMR spectroscopy revealed that the O‐GlcNAc‐modified Nup98 gel lacks amyloid‐like β‐structures that dominate the rigid regions in the S. cerevisiae Nsp1 FG hydrogel. This suggests that FG hydrogels can assemble through different structural principles and yet acquire the same NPC‐like permeability.  相似文献   
64.
真核细胞核膜上的核孔复合体 (nuclear pore complex, NPC) 是细胞核内外进行物质交换的主要通道, 分子量较小的化合物可自由通过NPC或采取被动扩散的方式进入细胞核, 而分子量为50 kD以上的蛋白质则只能通过主动转运进入细胞核. 以这种方式进入细胞核的 蛋白质必须在其氨基酸序列上拥有特殊的核定位信号(nuclear localization signal, NLS)以被相应的核转运蛋白(karyopherins) 识别. 核定位信号具有多样性, 包括经典核定位信号(classical NLS,cNLS), 内输蛋白β2识别的核定位信号(又称PY模体-NLS)和其它类型的NLS. 每一类NLS具有相似的特征, 但并不具有完全保守的氨基酸组成. 不同的NLS, 往往对应着各不相同的核输入机制. 而对同一蛋白质来说, 也可能同时拥有几个功能性的NLS. 研究核定位信号一方面可以帮助揭示新的大分子物质核转运机制, 另一方面也有助于发现一些蛋白质的新功能. 本文对常见NLS的分类进行了总结, 并介绍了两种常用的NLS预测软件及鉴定NLS的一般策略.  相似文献   
65.
Phosphoinositides (PIs) and proteins involved in the PI signaling pathway are distributed in the nucleus as well as at the plasma membrane and in the cytoplasm, although their nuclear localization mechanisms have not been clarified in detail. Generally, proteins that shuttle between the cytoplasm and nucleus contain nuclear localization signal (NLS) and nuclear export signal (NES) sequences for nuclear import and export, respectively. They bind to specific carrier proteins of the importin/exportin family and are transported to and from the nucleus. Thus there is a steady state shuttling of the cargo molecules to and from the nucleus, and the shift in equilibrium determines their nuclear or cytoplasmic localization. Our previous studies have shown that phospholipase C (PLC)-delta1, regarded as having cytoplasmic- or plasma membrane-bound localization, accumulates in the nucleus when its NES sequence is disrupted. In addition, a cluster of positively charged residues on the surface of the catalytic barrel is important for nuclear import. In quiescent cells, the shuttling equilibrium seems to be shifted to the nuclear export of PLCdelta1. In this review, recent findings regarding the molecular machineries and mechanisms of the nucleocytoplasmic shuttling of PLCdelta1 will be discussed. It is important to know when and how they are regulated. A shift in the equilibrium in a certain stage of the cell cycle or by external stimuli is possible and resulting changes in the intra-nuclear environments (or architectures) may alter proliferation and differentiation patterns. Evidences support the idea that an increase in the levels of intracellular Ca2+ shifts the equilibrium to the nuclear import of PLCdelta1. A myriad of external stimuli have also been reported to change the nuclear PI metabolism following accelerated accumulation in the nucleus of other phospholipases such as phospholipase A2 and phospholipase D in addition to PLC isoforms such as PLCbeta1 and PLCgamma1. The consequence of the nuclear accumulation of PLC is also discussed.  相似文献   
66.
67.
68.
69.
Proteins can enter the nucleus through various receptor-mediated import pathways. One class of import cargos carries a classical nuclear localization signal (cNLS) containing a short cluster of basic residues. This pathway involves importin α (Impα), which possesses the cNLS binding site, and importin β (Impβ), which translocates the import complex through the nuclear pore complex. The defining criteria for a cNLS protein from Saccharomyces cerevisiae are an in vivo import defect in Impα and Impβ mutants, direct binding to purified Impα, and stimulation of this binding by Impβ. We show for the first time that endogenous S. cerevisiae proteins Prp20, Cdc6, Swi5, Cdc45, and Clb2 fulfill all of these criteria identifying them as authentic yeast cNLS cargos. Furthermore, we found that the targeting signal of Prp20 is a bipartite cNLS and that of Cdc6 is a monopartite cNLS. Basic residues present within these motifs are of different significance for the interaction with Impα. We determined the binding constants for import complexes containing the five cNLS proteins by surface plasmon resonance spectrometry. The dissociation constants for cNLS/α/β complexes differ considerably, ranging from 1 nM for Cdc6 to 112 nM for Swi5, suggesting that the nuclear import kinetics is determined by the strength of cNLS/Impα binding. Impβ enhances the affinity of Impα for cNLSs approximately 100-fold. This stimulation of cNLS binding to Impα results from a faster association in the presence of Impβ, whereas the dissociation rate is unaffected by Impβ. This implies that, after entry into the nucleus, the release of Impβ by the Ran guanosine triphosphatase (Ran GTPase) from the import complex is not sufficient to dissociate the cNLS/Impα subcomplex. Our observation that the nucleoporin Nup2, which had been previously shown to release the cNLS from Impα in vitro, is required for efficient import of all the genuine cNLS cargos supports a general role of Nup2 in import termination.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号