首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1671篇
  免费   83篇
  国内免费   25篇
  1779篇
  2023年   19篇
  2022年   19篇
  2021年   28篇
  2020年   26篇
  2019年   26篇
  2018年   33篇
  2017年   28篇
  2016年   20篇
  2015年   30篇
  2014年   43篇
  2013年   57篇
  2012年   39篇
  2011年   48篇
  2010年   51篇
  2009年   64篇
  2008年   69篇
  2007年   64篇
  2006年   67篇
  2005年   63篇
  2004年   68篇
  2003年   57篇
  2002年   68篇
  2001年   55篇
  2000年   60篇
  1999年   50篇
  1998年   47篇
  1997年   29篇
  1996年   27篇
  1995年   37篇
  1994年   52篇
  1993年   37篇
  1992年   39篇
  1991年   27篇
  1990年   34篇
  1989年   36篇
  1988年   30篇
  1987年   15篇
  1986年   35篇
  1985年   24篇
  1984年   35篇
  1983年   11篇
  1982年   14篇
  1981年   11篇
  1980年   11篇
  1979年   9篇
  1978年   12篇
  1977年   8篇
  1976年   9篇
  1973年   7篇
  1971年   8篇
排序方式: 共有1779条查询结果,搜索用时 15 毫秒
31.
Summary The wall of the receptaculum seminis of Thermobia domestica is composed of numerous glandular units, each with four enveloping cells (denoted 1 to 4) separated by ordinary epithelial cells and associated with a cuticular apparatus. During the moulting periods, which continue to occur in the adult stage, these cells undergo a series of transformations. Just before apolysis there is a dedifferentiation of numerous cytoplasmic organelles, but no mitosis has been observed. When the intima lifts off, the apical system of each glandular unit, i.e. the distal parts of the C2 and C3 cells surrounding the end apparatus, is also eliminated. Then at the apex of each glandular unit, a new ductule is formed in the cavity of which a long ciliary process grows up from cell C1. Finally comes the phase of cuticle formation, i.e., epicuticle for the ductules, epi-and endocuticle for the intima lining the central cavity of the receptaculum. Various cell types participate in secretion of cuticle, the ciliary cells (C1) being responsible for the formation of the porous end apparatus. At ecdysis almost all of the new intima has been secreted and the apical systems are once more differentiated. These transformations are compared with those recently described in other exocrine glands of arthropods, e.g., tegumentary glands and accessory glands of the genital ducts.  相似文献   
32.
Sequence data from the nuclear small-subunit ribosomal RNA gene was obtained for nine strains of Bracteacoccus Tereg, representing at least five morphological species and four distinct geographic locations. These, along with sequence data from two additional chlorophycean taxa, Spongiochloris spongiosa Starr and Ascochloris multinucleata Bold et MacEntee, and 48 published sequences from green algal taxa, were used to determine the phylogenetic placement of Bracteacoccus with respect to other chlorophycean green algae. Results support the monophyly of Bracteacoccus strains, contrasting with patterns observed so far for many other coccoid green algae. The range of variation among Bracteacoccus strains is similar to that of other congeners. Basal body orientation in Bracteacoccus has been interpreted as clockwise; however, the 18S data point to a relationship between Bracteacoccus and taxa with the directly opposed configuration of the flagellar apparatus. No close relationship was found to the multinucleated green coccoids with clockwise orientation of basal bodies, such as Spongiochloris, or to those with parallel basal bodies, such as Spermatozopsis. However, 18S data confirm that the motile and vegetative cells of Bracteacoccus are structurally distinct from the representatives of sphaeroplealean families currently studied. It is premature to reclassify Bracteacoccus until 18S comparisons can be made with additional sphaeroplealean taxa and with algae with similar flagellar structure such as Dictyochloris and Heterochlamydomonas.  相似文献   
33.
34.
Summary Detailed histochemical studies have been conducted on the morphology of the Golgi apparatus by applying the thiamine pyrophosphatase technique (Novikoff and Goldfisher, 1961) to the neurons of supraoptic and paraventricular nuclei of normal and dehydrated rabbits. The neurons in both nuclei were classified into five categories on the basis of the morphology of the Golgi apparatus. The number of cells in individual categories were counted to evaluate the percentage of each category in the whole nucleus.Neurons have many vesicles which show the tendency to form clusters. Such clusters are present also in the basal bodies. The Golgi apparatus is localized near one side of the nucleus in many neurons. The neurons indicate phasic activity of resting, anabolic and catabolic stages under normal conditions.During dehydration, the Golgi apparatus went through the three stages of network formation, the increase of the budding-off process and later on disintegration. The supraoptic nucleus reacted to the TPPase test more severely than the paraventricular nucleus, whereas the former went through the stages more slowly than the latter. The paraventricular nucleus also revealed sensitivity to osmotic stress.  相似文献   
35.
Posttranslational matrix protein import into peroxisomes uses either one of the two peroxisomal targeting signals (PTS), PTS1 and PTS2. Unlike the PTS1 receptor Pex5p, the PTS2 receptor Pex7p is necessary but not sufficient to target cargo proteins into the peroxisomal matrix and requires coreceptors. Saccharomyces cerevisiae possesses two coreceptors, Pex18p and Pex21p, with a redundant but not a clearly defined function. To gain further insight into the early events of this import pathway, PTS2 pre-import complexes of S. cerevisiae were isolated and characterized by determination of size and protein composition in wild-type and different mutant strains. Mass spectrometric analysis of the cytosolic PTS2 pre-import complex indicates that Fox3p is the only abundant PTS2 protein under oleate growth conditions. Our data strongly suggest that the formation of the ternary cytosolic PTS2 pre-import complex occurs hierarchically. First, Pex7p recognizes cargo proteins through its PTS2 in the cytosol. In a second step, the coreceptor binds to this complex, and finally, this ternary 150 kDa pre-import complex docks at the peroxisomal membrane, where both the PTS1 and the PTS2 import pathways converge. Gel filtration analysis of membrane-bound subcomplexes suggests that Pex13p provides the initial binding partner at the peroxisomal membrane, whereas Pex14p assembles with Pex18p in high-molecular-weight complexes after or during dissociation of the PTS2 receptor.  相似文献   
36.
Summary Dissociated normal mammary epithelial cells from prelactating mice were plated on different substrates in various medium-serum-hormone combinations to find conditions that would permit maintenance of morphological differentiation. Cells cultured on floating collagen membranes in medium containing insulin, hydrocortisone and prolactin maintain differentiation through 1 month in culture. The surface cells form a continuous epithelial pavement. Some epithelial cells below the surface layer rearrange themselves to form alveolus-like structures. Cells at both sites display surface polarization; microvilli and tight junctions are present at their medium-facing or luminal surface and a basal lamina separates the epithelial components from the gel and stromal cells. Occasinal myoepithelial cells, characterized by myofilaments and plasmalemmal vesicles, are identified at the basal surface of the secretory epithelium. In contrast, cells cultured on plastic, glass or collagen gels attached to Petri dishes form a confluent epithelial sheet showing surface polarization, but lose secretory and myoepithelial specializations. If these dedifferentiated cells are subsequently maintained on floating collagen membranes, they redifferentiate. There is little DNA synthesis in cells on collagen gels, in contrast to Petri-dish controls. Protein synthesis in cells on floating collagen membranes increases over T0 values and remains constant through 7 days in culture whereas it decreases on attached gels; however, if the gels are freed to float, protein synthesis increases sharply and parallels that seen on floating membranes. The work was supported by USPHS Grants CA-05388 and CA-05045 from the National Cancer Institute, DHEW.  相似文献   
37.
Summary Glucose is actively absorbed via a Na+-dependent active glucose transporter (Na-GT) in the small intestine. We raised a polyclonal antibody against the peptide corresponding to amino acids 564–575 of rabbit intestinal Na-GT, and localized it immunohistochemically in the rat jejunum. By means of immunofluorescence staining, Na-GT was located at the brush border of the absorptive epithelial cells of the intestinal villi. Electron-microscopic examination showed that Na-GT was localized at the plasma membrane of the apical microvilli of these cells. Little Na-GT was found at the basolateral plasma membrane. Along the crypt-villus axis, all of the absorptive epithelial cells in the villus were positive for Na-GT. In addition to the brush border staining, the supranuclear positive staining, which was shown to be the Golgi apparatus by use of electron microscopy, was seen in cells located between the base to the middle of the villus. Cells in crypts exhibited little or no staining for Na-GT. Goblet cells scattered in the intestinal epithelium were negative for Na-GT staining. These observations show that Na-GT is specific to the apical plasma membrane of the absorptive epithelial cells, and that the onset of Na-GT synthesis may occur near the crypt-villus junction.  相似文献   
38.
Transport between the cytoplasm and the nucleus   总被引:1,自引:0,他引:1  
Summary Active transport of proteins and RNAs across the nuclear-pore complex (NPC) is mediated by a family of related transport receptors which shuttle between the cytoplasm and the nucleoplasm. A number of import and export pathways have been described. Some transport substrates require adapters which mediate association with certain transporters. The transport receptors specifically bind to a recognition signal within the transport substrate or adapter, pass the NPC in one direction, and deliver their cargo to the other side of the nuclear envelope. The Ran GTPase is the crucial regulator of bidirectional transport. Ran-modulating proteins establish an asymmetric intracellular distribution of Ran. As a result, Ran is mainly bound to GTP in the nucleus and to GDP in the cytoplasm. Evidently, RanGTP regulates binding and release of the transport substrates by binding to the transport receptors in the nucleus as well as the transport direction across the NPC. However, little is known about the molecular mechanism of translocation through the NPC.  相似文献   
39.
Isolated intact eyespot apparatuses, the photoreceptive organelles involved in blue-light-mediated photoresponses of flagellate green algae, were analyzed regarding their carotenoid composition. Carotenoids from the eyespot apparatuses of Spermatozopsis similis were identified by high-performance liquid chromatography, visible-light absorption spectra, mass spectroscopy and by 1H-nuclear magnetic resonance spectroscopy (carotenes), and compared with those of whole-cell extracts. Both extracts contained ,-carotene, ,-carotene (formerly -carotene), lycopene, lutein, zeaxanthin, violaxanthin and all-E-and 9-Z-neoxanthin. The relative carotenoid compositions, however, differed significantly. A twofold relative increase in the total carotene level was evident in the fraction enriched in eyespot apparatuses. This was mainly due to an increase in the monocyclic ,-carotene and the aliphatic lycopene, whereas the relative content of ,-carotene remained unchanged. On the other hand a relative decrease in the total xanthophyll content, especially of lutein and the epoxidic carotenoid neoxanthin, was observed in the eyespot apparatuses compared with the whole-cell extracts. The decrease of the latter resulted almost solely from a reduction of the 9-Z-rather than the all-E-isomer. The bulk of the carotenes is thought to be localized in the highly organized eyespot lipid globules, which act as a combined quarter-wave interference reflector and absorption screen for the photoreceptor in green algae. The enrichment of ,-carotene and lycopene in the eyespot apparatuses, extending the range of visible light absorption to longer wavelengths, represents an adaptation of the screen to the retinal-based photoreceptor of flagellate green algae and is one of the prerequisites for maximal directional sensitivity of the eyespot apparatus.Abbreviations 1H-NMR nuclear magnetic resonance - IUPAC International Union of Pure and Applied Chemistry - VIS visible absorption spectra This work was supported by the Deutsche Forschungsgemeinschaft (G.K. and M.M.). M.G. was supported by a fellowship from the Norwegian Research Council of Science and Humanities.  相似文献   
40.
Homologous protein import machineries in chloroplasts and cyanelles   总被引:2,自引:0,他引:2  
The cyanelles of the glaucocystophyte alga Cyanophora paradoxa resemble endosymbiotic cyanobacteria, especially in the presence of a peptidoglycan wall between the inner and outer envelope membranes. However, it is now clear that cyanelles are in fact primitive plastids. Phylogenetic analyses of plastid, nuclear and mitochondrial genes support a single primary endosymbiotic event. In this scenario, cyanelles and all other plastid types are derived from an ancestral photosynthetic organelle combining the high gene content of rhodoplasts and the peptidoglycan wall of cyanelles. This means that the import apparatuses of all primary plastids, i.e. those from glaucocystophytes, red algae, green algae and higher plants, should be homologous. If this is the case, then transit sequences should be similar and heterologous import experiments feasible. Thus far, heterologous in vitro import has been shown in one direction only: precursors from C. paradoxa were imported into isolated pea or spinach chloroplasts. Cyanelle transit sequences differ from chloroplast stroma targeting peptides in containing in their N-terminal domain an invariant phenylalanine residue which is shown here to be crucial for import. In addition, we now demonstrate that heterologous precursors are readily imported into isolated cyanelles, provided that the essential phenylalanine residue is engineered into the N-terminal part of chloroplast transit peptides. The cyanelle and likely also the rhodoplast import apparatus can be envisaged as prototypes with a single receptor/channel showing this requirement for N-terminal phenylalanine. In chloroplasts, multiple receptors with overlapping and less stringent specificities have evolved, explaining the efficient heterologous import of native precursors from C. paradoxa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号