首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917篇
  免费   47篇
  国内免费   46篇
  1010篇
  2024年   18篇
  2023年   68篇
  2022年   54篇
  2021年   91篇
  2020年   62篇
  2019年   64篇
  2018年   65篇
  2017年   38篇
  2016年   21篇
  2015年   34篇
  2014年   46篇
  2013年   60篇
  2012年   23篇
  2011年   22篇
  2010年   17篇
  2009年   23篇
  2008年   26篇
  2007年   31篇
  2006年   22篇
  2005年   21篇
  2004年   19篇
  2003年   21篇
  2002年   10篇
  2001年   13篇
  2000年   10篇
  1999年   13篇
  1998年   20篇
  1997年   13篇
  1996年   9篇
  1995年   8篇
  1994年   17篇
  1993年   18篇
  1992年   14篇
  1991年   9篇
  1990年   8篇
  1988年   1篇
  1985年   1篇
排序方式: 共有1010条查询结果,搜索用时 15 毫秒
11.
The efficacy of systemic infusion of recombinant human macrophage-colony-stimulating factor (M-CSF) in combination with local treatment with human recombinant tumor necrosis factor (TNF) and mouse recombinant interferon (IFN) was studied in vivo on a subclone of B16 melanoma (MmB16) in mice. Short-term intravenous administration of M-CSF at a dose of 106 units daily had no antitumor effect in vivo. Similarly, local treatment of tumor with TNF (5 g daily) did not produce any therapeutic effect. However, simultaneous administration of the same dose of TNF with IFN (1000 units daily) resulted in a synergistic effects manifested by the retardation of tumor growth. Addition of systemic infusion of M-CSF to the local therapy with TNF and IFN induced further augmentation of antitumor efficacy and delayed progression of MmB16 melanoma. The strengthened antitumor effect of combination therapy including M-CSF, TNF and IFN was most probably due to the increased release of monocytes from the bone marrow, their recruitment into the site of tumor growth and subsequent local stimulation of their antitumor activity.  相似文献   
12.
13.

Background

Dendritic cells (DCs) are the most efficient antigen-presenting cells and act at the center of the immune system owing to their ability to control both immune tolerance and immunity. In cancer immunotherapy, DCs play a key role in the regulation of the immune response against tumors and can be generated ex vivo with different cytokine cocktails. Methods. We evaluated the feasibility of dinoprostone (PGE2) replacement with the molecular analog sulprostone, in our good manufacturing practice (GMP) protocol for the generation of DC-based cancer vaccine. We characterized the phenotype and the function of DCs matured in the presence of sulprostone as a potential substitute of dinoprostone in the pro-inflammatory maturation cocktail consisting of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β) and IL-6. Results. We found that sulprostone invariably reduces the recovery, but does not significantly modify the viability and the purity of DCs. The presence of sulprostone in the maturation cocktail increases the adhesion of single cells and of clusters of DCs to the flask, making them more similar to their immature counterpart in terms of adhesion and spreading proprieties. Moreover, we observed that sulprostone impairs the expression of co-stimulatory molecules and the spontaneous as well as the directed migration capacity of DCs.

Discussion

These findings underscore that the synthetic analog sulprostone strongly reduces the functional quality of DCs, thus cannot replace dinoprostone in the maturation cocktail of monocyte-derived DCs.  相似文献   
14.
自然杀伤(NK)细胞是人体先天免疫的核心组成部分,是肿瘤细胞免疫治疗和抗体免疫治疗的基础.NK细胞通过直接杀伤作用和释放细胞因子来共同控制肿瘤的生长和转移.目前,已开发出多种利用激活的NK细胞治疗肿瘤的方案.然而,癌症患者的NK细胞功能受损,抗癌能力下降,均限制了NK 细胞的临床疗效 .新的方案通过提高NK细胞的数量和杀伤功能来改善治疗效果. 利用体外长期激活、大规模培养临床使用的NK细胞是达成上述效果的最佳方法之一. 本综述讨论了NK细胞研究背景,NK细胞治疗的现状,尤其是体外培养扩增具有较强功能NK细胞的新方案.  相似文献   
15.
Type I and III interferons (IFNs) of the innate immune system belong to a polygenic family, however the individual subtype mediators of the antiviral response in viral infections have been hindered by a lack of reagents. Evaluation studies using different IFN subtypes have distinguished distinct protein properties with different efficacies towards different viruses, opening promising avenues for immunotherapy. This review largely focuses on the application of IFN-α/β and IFN-λ therapies for viral infections, influenza, herpes, HIV and hepatitis. Such IFN subtype therapies may help to cure patients with virus infections where no vaccine exists. The ability of cell types to secrete a number of IFN subtypes from a multi-gene family may be an intuitive counterattack on viruses that evade IFN subtype responses. Hence, clinical use of virus-targeted IFN subtypes may restore antiviral immunity in viral infections. Accumulating evidence suggests that individual IFN subtypes have differential efficacies in selectively activating immune cell subsets to enhance antiviral immune responses leading to production of sustained B and T cell memory. Cytokine therapy can augment innate immunity leading to clearance of acute virus infections but such treatments may have limited effects on chronic virus infections that establish lifelong latency. Therefore, exploiting individual IFN subtypes to select those with the ability to sculpt protective responses as well as reinstating those targeted by viral evasion mechanisms may inform development of improved antiviral therapy.  相似文献   
16.
Antibodies against cocaine and other drugs of abuse are the basis for diagnostic tests for the presence of those drugs in human serum. The 1.7A resolution crystal structure of the anti-cocaine monoclonal antibody M82G2 in complex with cocaine is presented. This structure determination was undertaken to establish the stereochemical features in the antibody binding site that confer specificity for cocaine, and as part of an ongoing project to understand the rules that govern molecular recognition. The cocaine-binding site can be characterized topologically as a narrow groove on the protein surface. The antibody utilizes water-mediated hydrogen bonding, and cation-pi and stacking (pi-pi) interactions to provide specificity. Comparison with the previously published structure of the anti-cocaine antibody GNC92H2 shows that binding of a small ligand can be achieved in diverse ways, both in terms of a binding site structure/topology and protein-ligand interactions.  相似文献   
17.
Immune checkpoint inhibitors improved the survival rate of patients with unresectable melanoma. However, some patients do not respond, and variable immune‐related adverse events have been reported. Therefore, more effective and antigen‐specific immune therapies are urgently needed. We previously reported the efficacy of an immune cell therapy with immortalized myeloid cells derived from induced pluripotent stem cells (iPS‐ML). In this study, we generated OX40L‐overexpressing iPS‐ML (iPS‐ML‐Zsgreen‐OX40L) and investigated their characteristics and in vivo efficacy against mouse melanoma. We found that iPS‐ML‐Zsgreen‐OX40L suppressed the progression of B16‐BL6 melanoma, and prolonged survival of mice with ovalbumin (OVA)‐expressing B16 melanoma (MO4). The number of antigen‐specific CD8+ T cells was higher in spleen cells treated with OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L than in those without OX40L. The OVA peptide‐pulsed iPS‐ML‐Zsgreen‐OX40L significantly increased the number of tumor‐infiltrating T lymphocytes (TILs) in MO4 tumor. Flow cytometry showed decreased regulatory T cells but increased effector and effector memory T cells among the TILs. Although we plan to use allogeneic iPS‐ML in the clinical applications, iPS‐ML showed the tumorgenicity in the syngeneic mice model. Incorporating the suicide gene is necessary to ensure the safety in the future study. Collectively, these results indicate that iPS‐ML‐Zsgreen‐OX40L therapy might be a new method for antigen‐specific cancer immunotherapy.  相似文献   
18.
In order to expand tumor-infiltrating lymphocytes (TIL) efficiently and in order to use them for immunotherapy, we utilized lipopolysaccharide-activated B cells (LPS blasts) as costimulatory-signal-providing cells in an in vitro culture system. TIL, prepared from subcutaneously inoculated B16 melanoma, failed to expand when cultured with anti-CD3 monoclonal antibody (mAb) alone followed by a low dose of interleukin(IL)-2. In contrast, such TIL did expand efficiently in culture with both anti-CD3 mAb and LPS blasts followed by culture with IL-2. These findings suggest that the presence of LPS blasts in the initial culture was essential for the cell expansion. The expansion of TIL was partially blocked by the addition of CTLA4 Ig, which is an inhibitor of costimulatory molecules such as CD80 and CD86, and was almost blocked by the addition of anti-(Fc receptor II)mAb. These findings thus indicate that such molecules, in conjunction with the receptor on the LPS blasts, participate in the efficient expansion of TIL. The B16-derived TIL, which expanded in our culture system, were predominantly CD8+T cells and showed a higher level of cytolytic activity against B16 melanoma than either lymphokine-activated killer cells or TIL cultured with a high dose of IL-2. In addition, the in vitro expanded B16-derived TIL produced interferon , but not IL-4, in response to B16 melanoma. What is more important, the adoptive transfer of such TIL had a significant antitumor effect against pulmonary metastasis in B16 melanoma, even without the concurrent administration of IL-2. Collectively, our results thus indicate the therapeutic efficacy of the protocol presented here for antitumor immunotherapy with TIL.This work was supported in part by a grant from the Ministry of Education, Science and Culture  相似文献   
19.
以线性表位肽P14(a3127-148)作为抗原建立适合免疫治疗的抗肾小球基底膜(anti-glomerular basement membrane,GBM)病大鼠模型。采用大鼠后脚垫三点注射P14(a3127-148)与弗氏佐剂乳化物的方法进行单次免疫,免疫前后每周采集24 h尿样和血样,所有大鼠在免疫后7 w处死。大鼠免疫后,肾炎模型组在各时间点的24 h尿蛋白、尿蛋白肌酐比值(albumin/urine creatinine ratio,ACR)、血肌酐及血尿素氮均明显高于对照组(P<0.05);循环抗P14(a3127-148)IgG抗体水平明显高于对照组(P<0.001);PAS染色可见节段性纤维素样坏死,富于细胞型新月体;免疫组化染色可见肾小球有明显的中性粒细胞和巨噬细胞浸润;免疫荧光检测可见IgG沿GBM呈强线性沉积;电镜观察到GBM的断裂和收缩;而对照组均未见改变。HE染色在所有大鼠中均未观察到肺部病变。使用P14(a3127-148)线性肽免疫WKY大鼠成功建立了大鼠抗GBM病模型,有助于开发更为特异的免疫疗法。  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号