首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2602篇
  免费   102篇
  国内免费   189篇
  2023年   38篇
  2022年   35篇
  2021年   54篇
  2020年   49篇
  2019年   59篇
  2018年   68篇
  2017年   45篇
  2016年   55篇
  2015年   60篇
  2014年   103篇
  2013年   136篇
  2012年   77篇
  2011年   116篇
  2010年   95篇
  2009年   142篇
  2008年   161篇
  2007年   167篇
  2006年   182篇
  2005年   131篇
  2004年   122篇
  2003年   106篇
  2002年   98篇
  2001年   76篇
  2000年   58篇
  1999年   43篇
  1998年   62篇
  1997年   38篇
  1996年   51篇
  1995年   30篇
  1994年   42篇
  1993年   49篇
  1992年   37篇
  1991年   24篇
  1990年   28篇
  1989年   24篇
  1988年   31篇
  1987年   18篇
  1986年   33篇
  1985年   21篇
  1984年   25篇
  1983年   10篇
  1982年   24篇
  1981年   14篇
  1980年   4篇
  1979年   6篇
  1978年   12篇
  1976年   11篇
  1975年   3篇
  1973年   9篇
  1971年   3篇
排序方式: 共有2893条查询结果,搜索用时 15 毫秒
101.
Tricho–rhino–phalangeal syndrome (TRPS) is a rare autosomal dominant disorder. Deletion or mutation of the TRPS1 gene leads to the tricho–rhino–phalangeal syndromes type I or type III. In this article, we describe a Chinese patient affected with type I TRPS and showing prominent pilar, rhinal and phalangeal abnormalities. Mutational screening and sequence analysis of TRPS1 gene revealed a previously unidentified four-base-pair deletion of nucleotides 1783–1786 (c.1783_1786delACTT). The mutation causes a frame shift after codon 593, introducing a premature stop codon after 637 residues in the gene sequence. This deletion is an unquestionable loss-of-function mutation, deleting all the functionally important parts of the protein. Our novel discovery indicates that sparse hair and metacarpal defects of tricho–rhino–phalangeal syndromes in this patient are due to this TRPS1 mutation. And this data further supports the critical role of TRPS1 gene in hair and partial skeleton morphogenesis.  相似文献   
102.
103.
The interaction of amyloid beta (Aβ) peptide with cell membranes has been shown to be influenced by Aβ conformation, membrane physicochemical properties and lipid composition. However, the effect of cholesterol and its oxidized derivatives, oxysterols, on Aβ-induced neurotoxicity to membranes is not fully understood. We employed here model membranes to investigate the localization of Aβ in membranes and the peptide-induced membrane dynamics in the presence of cholesterol and 7-ketocholesterol (7keto) or 25-hydroxycholesterol (25OH). Our results have indicated that oxysterols rendered membranes more sensitive to Aβ, in contrast to role of cholesterol in inhibiting Aβ/membrane interaction. We have demonstrated that two oxysterols had different impacts owing to distinct positions of the additional oxygen group in their structures. 7keto-containing cell-sized liposomes exhibited a high propensity toward association with Aβ, while 25OH systems were more capable of morphological changes in response to the peptide. Furthermore, we have shown that 42-amino acid Aβ (Aβ-42) pre-fibril species had higher association with membranes, and caused membrane fluctuation faster than 40-residue isoform (Aβ-40). These findings suggest the enhancing effect of oxysterols on interaction of Aβ with membranes and contribute to clarify the harmful impact of cholesterol on Aβ-induced neurotoxicity by means of its oxidation.  相似文献   
104.
105.
106.
The intermediate of the aromatization of 4-oxocyclohexanecar-boxylic acid (OHA) to 4-hydroxybenzoic acid (HA) by Coryne-bacterium cyclohexanicum was identified as (+)-4-oxocyclohex-2-enecarboxylic acid (O2A) using a combined system of gas-liquid chromatography (GLC) and a mass spectrometer and polarimeter.  相似文献   
107.
Antioxidant cellular mechanisms are essential for cell redox homeostasis during animal development and in adult life. Previous in situ hybridization analyses of antioxidant enzymes in zebrafish have indicated that they are ubiquitously expressed. However, spatial information about the protein distribution of these enzymes is not available. Zebrafish embryos are particularly suitable for this type of analysis due to their small size, transparency and fast development. The main objective of the present work was to analyze the spatial and temporal gene expression pattern of the two reported zebrafish glutathione peroxidase 4 (GPx4) genes during the first day of zebrafish embryo development. We found that the gpx4b gene shows maternal and zygotic gene expression in the embryo proper compared to gpx4a that showed zygotic gene expression in the periderm covering the yolk cell only. Following, we performed a GPx4 protein immunolocalization analysis during the first 24-h of development. The detection of this protein suggests that the antibody recognizes GPx4b in the embryo proper during the first 24 h of development and GPx4a at the periderm covering the yolk cell after 14-somite stage. Throughout early cleavages, GPx4 was located in blastomeres and was less abundant at the cleavage furrow. Later, from the 128-cell to 512-cell stages, GPx4 remained in the cytoplasm but gradually increased in the nuclei, beginning in marginal blastomeres and extending the nuclear localization to all blastomeres. During epiboly progression, GPx4b was found in blastoderm cells and was excluded from the yolk cell. After 24 h of development, GPx4b was present in the myotomes particularly in the slow muscle fibers, and was excluded from the myosepta. These results highlight the dynamics of the GPx4 localization pattern and suggest its potential participation in fundamental developmental processes.  相似文献   
108.
Bats broadcast rapid sequences of echolocation calls, named ‘drinking buzzes’, when they approach water to drink on the wing. So far this phenomenon has received little attention. We recorded echolocation sequences of drinking bats for 12 species, for 11 of which we also recorded feeding buzzes. Based on the different sensorial tasks faced by feeding and drinking bats, we hypothesize that the drinking buzz structure will differ from that of feeding buzzes since unlike the latter drinking buzzes are not designed to detect and track mobile prey. We demonstrated that drinking buzzes are structurally different from feeding buzzes. We show that the buzz‐II phase common in feeding buzzes is absent in drinking buzzes; that is, call frequency is not lowered to broaden sonar beam since the task of drinking does not imply tracking fast‐moving targets. This finding indirectly confirms the role of buzz II in feeding buzzes. Pulse rate in drinking buzzes is also lower than in feeding buzzes, as predicted since the high pulse rate typical of feeding buzzes is important to update rapidly the relative location of moving targets. The most likely function of drinking buzzes is to guide a safe drinking manoeuvre, similar to ‘landing buzzes’ broadcast when bats land on the ground.  相似文献   
109.
SDA1 encodes a highly conserved protein that is widely distributed in eukaryotic organisms. SDA1 is essential for cell cycle progression and organization of the actin cytoskeleton in yeasts and humans. In this study, we identified a Phytophthora capsici orthologue of yeast SDA1, named PcSDA1. In P. capsici, PcSDA1 is strongly expressed in three asexual developmental states (mycelium, sporangia and germinating cysts), as well as late in infection. Silencing or overexpression of PcSDA1 in P. capsici transformants affected the growth of hyphae and sporangiophores, sporangial development, cyst germination and zoospore release. Phalloidin staining confirmed that PcSDA1 is required for organization of the actin cytoskeleton. Moreover, 4′,6‐diamidino‐2‐phenylindole (DAPI) staining and PcSDA1‐green fluorescent protein (GFP) fusions revealed that PcSDA1 is involved in the regulation of nuclear distribution in hyphae and sporangia. Both silenced and overexpression transformants showed severely diminished virulence. Thus, our results suggest that PcSDA1 plays a similar role in the regulation of the actin cytoskeleton and nuclear division in this filamentous organism as in non‐filamentous yeasts and human cells.  相似文献   
110.
BRCA1 tumor suppressor gene is found mutated in familial breast and ovarian cancer. Most cancer related mutations were found located at the RING (Really Interesting New Gene) and at the BRCT (BRca1 C-Terminal) domain. However, 20 y after its identification, the biological role of BRCA1 and which domains are more relevant for tumor suppression are still being elucidated. We previously reported that expression of BRCA1 cancer related variants in the RING and BRCT domain increases spontaneous homologous recombination in yeast indicating that BRCA1 may interact with yeast DNA repair/recombination. To finally demonstrate whether BRCA1 interacts with yeast DNA repair, we exposed yeast cells expressing BRCA1wt, the cancer-related variants C-61G and M1775R to different doses of the alkylating agent methyl methane-sulfonate (MMS) and then evaluated the effect on survival and homologous recombination. Cells expressing BRCA1 cancer variants were more sensitive to MMS and less inducible to recombination as compared to cell expressing BRCA1wt. Moreover, BRCA1-C61G and -M1775R did not change their nuclear localization form as compared to the BRCA1wt or the neutral variant R1751Q indicating a difference in the DNA damage processing. We propose a model where BRCA1 cancer variants interact with the DNA double strand break repair pathways producing DNA recombination intermediates, that maybe less repairable and decrease MMS-induced recombination and survival. Again, this study strengthens the use of yeast as model system to characterize the mechanisms leading to cancer in humans carrying the BRCA1 missense variant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号